PyTorch内Tensor按索引赋值的方法比较

有很多时候,我们需要对深度学习过程中的tensor进行一些非整齐、离散化的赋值操作,例如我们让网络的一支输出可能的索引值,而另外一支可能需要去取对应索引值的内容。PyTorch提供了几种方法实现上述操作,但是其实际效果之间存在差异,在这里整理一下。

  1. scatter_(dim, index, src)
    按照index,将src的数据散放到self的'dim'维度中。例如,对于三维Tensor,效果如下:
    self[index[i][j][k]][j][k] = src[i][j][k]  # if dim == 0
    self[i][index[i][j][k]][k] = src[i][j][k]  # if dim == 1
    self[i][j][index[i][j][k]] = src[i][j][k]  # if dim == 2
    
    • dim (int) - 要散布拷贝的维度
    • index (LongTensor) - 散布拷贝的索引
    • src (Tensor or float) - 要散布拷贝的源,可以是单个浮点值或是tensor
  2. index_fill_(dim, index, val)
    按照index,将val的值填充selfdim维度。效果如下:
    >>> x = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=torch.float)
    >>> index = torch.tensor([0, 2])
    >>> x.index_fill_(1, index, -1)
    tensor([[-1.,  2., -1.],
            [-1.,  5., -1.],
            [-1.,  8., -1.]])
    
    • dim (int) - 要填充的维度
    • index (LongTensor) - 要填充的索引
    • val (float) - 要填充的值
  3. index_put_(indices, value)
    按照indices,将val的值填充到self的对应位置。效果如下:
    >>> a = torch.zeros([5,5])
    >>> index = (torch.LongTensor([0,1]),torch.LongTensor([1,2])
    >>> a.index_put_(index), torch.Tensor([1,1]))
    tensor([[ 0.,  1.,  0.,  0.,  0.],
            [ 0.,  0.,  1.,  0.,  0.],
            [ 0.,  0.,  0.,  0.,  0.],
            [ 0.,  0.,  0.,  0.,  0.],
            [ 0.,  0.,  0.,  0.,  0.]])
    
    • indices (tuple of LongTensor) - 要填充的索引
    • value (Tensor) - 要填充的值组成的tensor

这三者的参数名相像,但实际上对各参数的定义有差别,要仔细跟据参数类型和例子好好分析。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,830评论 5 468
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,992评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,875评论 0 331
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,837评论 1 271
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,734评论 5 360
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,091评论 1 277
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,550评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,217评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,368评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,298评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,350评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,027评论 3 315
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,623评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,706评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,940评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,349评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,936评论 2 341

推荐阅读更多精彩内容