知识图谱入门 Knowledge Graph 第一讲 概览

人的记忆偏重关联
Web:以链接为中心的系统
语义网:从链接文本到 链接数据

每个点都是一个对象,每条边都是对象之间的关系

知识图谱:2012由谷歌提出,连接在一起的不再是text,而是thing或者叫object
搜索出来的东西,不再仅仅是网页连接,而是一个个对象,与搜索的对象有明确的语义关系

语义分析,结构化搜索,FB的Graph Search

背后需要知识表示知识库的支持
作用:辅助搜索、问答、辅助决策、常识推理
当深度学习遇到知识图谱,从感知、识别、判断进化到了思考、语言、推理

本质

  • Web:语义搜索
  • NLP:抽取语义和结构化数据
  • KR:用计算机符号表示和处理知识
  • AI:辅助理解人的语言
  • DB:用图的方式存储知识

典型知识库项目

CYC 常识知识库 term+assertion
Wordnet:词典数据库,只要用于语义消歧
ConceptNet:常识知识库,三元组形式
Freebase:免费,允许商业化
Wikidata:目标是构建全世界最大的免费知识库
DBPedia:早期的语义网项目 30亿RDF三元组
Yago集成了Wikipedia, WordNet, GeoNames的数据,考虑了时间和空间知识, 1.2亿条三元组
Babelnet类似于WordNet,目标是解决多语种问题
NELL采用互联网挖掘的方法从WEB自动抽取三元组
微软Concept Graph以概念层次体系为中心的知识图谱
OpenKG.cn中文知识图谱资料库
zhishi.me

知识图谱的技术体系


把不同来源的数据通过各种技术手段(图中黑框字)形成知识图谱数据

  • KBP: knowledge base population
  • D2R: database to RDF (三元组 triple based assertion model)
知识表示

用计算机符号表示人脑中的知识,以及通过符号之间的运算来模拟人脑的推理过程。最早是基于数理逻辑,现在是基于向量空间学习的分布式知识表示


三元组 主谓宾RDF


RDF Graph

RDFS在RDF的基础上增加词汇量,增加约束
Class, subClassOf, type, Property, subPropertyOf, Domain, Range

OWL 基于RDFS
complex classes, property restrictions, cardianlity restrictions, property characteristics

SPARQL RDF的查询语言

知识图谱的分布式表示 KG Embedding
知识抽取 NLP+KR
抽取方法
  • 正则
  • 模板匹配
  • 规则约束
  • 知识挖掘
  • SVM CRF LSTM
  • 训练
知识存储

多为混合存储模型 关系型 非关系型 图存储

知识问答

KBQA knowledge-based question answering

基本流程

知识推理
知识融合

对不同数据集中的实体信息进行整合,形成更加全面的实体信息
典型工具:

  • Dedupe
  • LIMES
知识众包

Wikibase
Schema.ORG

典型案例

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容