PG 11即将正式发布,本节简单了PG 11的一些新特性,包括并行查询的性能提升和数据表分区的功能增强。
一、并行查询
Parallel Hash
Hash Join执行时,在构造Hash表和进行Hash连接时,PG 11可使用并行的方式执行。
测试脚本:
testdb=# create table t1 (c1 int,c2 varchar(40),c3 varchar(40));
CREATE TABLE
testdb=#
testdb=# insert into t1 select generate_series(1,5000000),'TEST'||generate_series(1,1000000),generate_series(1,1000000)||'TEST';
INSERT 0 5000000
testdb=# drop table if exists t2;
DROP TABLE
testdb=# create table t2 (c1 int,c2 varchar(40),c3 varchar(40));
CREATE TABLE
testdb=#
testdb=# insert into t2 select generate_series(1,1000000),'T2'||generate_series(1,1000000),generate_series(1,1000000)||'T2';
INSERT 0 1000000
testdb=# explain verbose
testdb-# select t1.c1,t2.c1
testdb-# from t1 inner join t2 on t1.c1 = t2.c1;
QUERY PLAN
---------------------------------------------------------------------------------------------
Gather (cost=18372.00..107975.86 rows=101100 width=8)
Output: t1.c1, t2.c1
Workers Planned: 2 -- 2 Workers
-> Parallel Hash Join (cost=17372.00..96865.86 rows=42125 width=8) -- Parallel Hash Join
Output: t1.c1, t2.c1
Hash Cond: (t1.c1 = t2.c1)
-> Parallel Seq Scan on public.t1 (cost=0.00..45787.33 rows=2083333 width=4)
Output: t1.c1
-> Parallel Hash (cost=10535.67..10535.67 rows=416667 width=4) -- Parallel Hash
Output: t2.c1
-> Parallel Seq Scan on public.t2 (cost=0.00..10535.67 rows=416667 width=4)
Output: t2.c1
除了Parallel Hash外,PG 11在执行Parallel Append(执行UNION ALL等集合操作)/CREATE TABLE AS SELECT/CREATE MATERIALIZED VIEW/SELECT INTO/CREATE INDEX等操作时以并行的方式执行.
二、数据表分区
Hash Partition
PG 在11.x引入了Hash分区,关于Hash分区,官方文档有如下说明:
The table is partitioned by specifying a modulus and a remainder for each partition. Each partition will hold the rows for which the hash value of the partition key divided by the specified modulus will produce the specified remainder.
每个Hash分区需指定"模"(modulus)和"余"(remainder),数据在哪个分区(partition index)的计算公式:
partition index = abs(hashfunc(key)) % modulus
drop table if exists t_hash1;
create table t_hash1 (c1 int,c2 varchar(40),c3 varchar(40)) partition by hash(c1);
create table t_hash1_1 partition of t_hash1 for values with (modulus 6,remainder 0);
create table t_hash1_2 partition of t_hash1 for values with (modulus 6,remainder 1);
create table t_hash1_3 partition of t_hash1 for values with (modulus 6,remainder 2);
create table t_hash1_4 partition of t_hash1 for values with (modulus 6,remainder 3);
create table t_hash1_5 partition of t_hash1 for values with (modulus 6,remainder 4);
create table t_hash1_6 partition of t_hash1 for values with (modulus 6,remainder 5);
testdb=# insert into t_hash1
testdb-# select generate_series(1,1000000),'HASH'||generate_series(1,1000000),generate_series(1,1000000)||'HASH';
INSERT 0 1000000
数据在各分区上的分布大体均匀.
2018-9-19 注:由于插入数据时语句出错,昨天得出的结果有误(但数据在各个分区的分布上不太均匀,t_hash1_1分区行数明显的比其他分区的要多很多),请忽略
testdb=# select count(*) from only t_hash1;
; count
-------
0
(1 row)
testdb=# select count(*) from only t_hash1_1;
count
--------
166480
(1 row)
testdb=# select count(*) from only t_hash1_2;
count
--------
166904
(1 row)
testdb=# select count(*) from only t_hash1_3;
count
--------
166302
(1 row)
testdb=# select count(*) from only t_hash1_4;
count
--------
166783
(1 row)
testdb=# select count(*) from only t_hash1_5;
count
--------
166593
(1 row)
testdb=# select count(*) from only t_hash1_6;
count
--------
166938
(1 row)
Hash分区键亦可以创建在字符型字段上
testdb=# drop table if exists t_hash3;
DROP TABLE
testdb=# create table t_hash3 (c1 int,c2 varchar(40),c3 varchar(40)) partition by hash(c2);
CREATE TABLE
-- 需创建相应的"Partition"用于存储相应的数据
testdb=# insert into t_hash3
testdb-# select generate_series(1,100000),'HASH'||generate_series(1,1000000),generate_series(1,1000000)||'HASH';
ERROR: no partition of relation "t_hash3" found for row
DETAIL: Partition key of the failing row contains (c2) = (HASH1).
-- 6个分区,3个sub-table,插入数据会出错
testdb=#
testdb=# create table t_hash3_1 partition of t_hash3 for values with (modulus 6,remainder 0);
CREATE TABLE
testdb=# create table t_hash3_2 partition of t_hash3 for values with (modulus 6,remainder 1);
CREATE TABLE
testdb=# create table t_hash3_3 partition of t_hash3 for values with (modulus 6,remainder 2);
CREATE TABLE
testdb=# insert into t_hash3
testdb-# select generate_series(1,10000),'HASH'||generate_series(1,10000),generate_series(1,10000)||'HASH';
ERROR: no partition of relation "t_hash3" found for row
DETAIL: Partition key of the failing row contains (c2) = (HASH1).
-- 3个分区,3个sub-table,正常
testdb=# drop table if exists t_hash3;
DROP TABLE
testdb=# create table t_hash3 (c1 int,c2 varchar(40),c3 varchar(40)) partition by hash(c2);
CREATE TABLE
testdb=# create table t_hash3_1 partition of t_hash3 for values with (modulus 3,remainder 0);
CREATE TABLE
testdb=# create table t_hash3_2 partition of t_hash3 for values with (modulus 3,remainder 1);
CREATE TABLE
testdb=# create table t_hash3_3 partition of t_hash3 for values with (modulus 3,remainder 2);
CREATE TABLE
testdb=# insert into t_hash3
testdb-# select generate_series(1,10000),'HASH'||generate_series(1,10000),generate_series(1,10000)||'HASH';
INSERT 0 10000
考察分区的数据分布,还比较均匀:
testdb=#
testdb=# select count(*) from only t_hash3;
count
-------
0
(1 row)
testdb=# select count(*) from only t_hash3_1;
count
-------
3378
(1 row)
testdb=# select count(*) from only t_hash3_2;
count
-------
3288
(1 row)
testdb=# select count(*) from only t_hash3_3;
count
-------
3334
(1 row)
Default Partition
List和Range分区可指定Default Partition(Hash分区不支持).
Update partition key
PG 11可Update分区键,这会导致数据的"迁移".
Create unique constraint
PG 11在分区表上创建主键和唯一索引(注:Oracle在很早的版本已支持此特性).
在普通字段上可以创建BTree索引.
testdb=# alter table t_hash1 add primary key(c1);
ALTER TABLE
testdb=# create index idx_t_hash1_c2 on t_hash1(c2);
CREATE INDEX
FOREIGN KEY support
PG 11支持在分区上创建外键.
除了上述几个新特性外,分区上面,PG 11在Automatic index creation/INSERT ON CONFLICT/Partition-Wise Join / Partition-Wise Aggregate/FOR EACH ROW trigger/Dynamic Partition Elimination/Control Partition Pruning上均有所增强.
三、参考资料
PostgreSQL 11 New Features With Examples(Beta 1)
PostgreSQL 11 Table Partitioning