Arrays.sort使用的排序算法

直接开门见山

java中Arrays.sort使用了两种排序方法,快速排序和优化的归并排序。

快速排序主要是对哪些基本类型数据(int,short,long等)排序, 而合并排序用于对对象类型进行排序。使用不同类型的排序算法主要是由于快速排序是不稳定的,而合并排序是稳定的

归并排序相对而言比较次数比快速排序少,移动(对象引用的移动)次数比快速排序多,而对于对象来说,比较一般比移动耗时。补充一点合并排序的时间复杂度是nlogn, 快速排序的平均时间复杂度也是nlogn,但是合并排序的需要额外的n个引用的空间。

import java.util.Arrays;
import java.util.Comparator;

public class ArraySort {
    public static void main(String[] args) {
        Dog d2 = new Dog(2);
        Dog d1 = new Dog(1);
        Dog d3 = new Dog(3);
        Dog[] dogArray = {d3,d1,d2};
        printDog(dogArray);
        Arrays.sort(dogArray,new DogSizeComparator());
        printDog(dogArray);
    }
    public  static  void  printDog(Dog[] dogs){
        for (Dog dog:dogs) {
            System.out.println(dog.size+" ");
        }
        System.out.println();
    }
}

class  Dog{
    int size;
    public  Dog(int s){
        this.size = s;
    }
}

class DogSizeComparator implements Comparator<Dog> {
    @Override
    public int compare(Dog o1, Dog o2) {
        return o1.size - o2.size;
    }
}

源码中的快速排序,主要做了以下几个方面的优化:
  1)当待排序的数组中的元素个数较少时,源码中的阀值为7,采用的是插入排序。尽管插入排序的时间复杂度为0(n^2),但是当数组元素较少时,插入排序优于快速排序,因为这时快速排序的递归操作影响性能。
  2)较好的选择了划分元(基准元素)。能够将数组分成大致两个相等的部分,避免出现最坏的情况。例如当数组有序的的情况下,选择第一个元素作为划分元,将使得算法的时间复杂度达到O(n^2).
  3)根据划分元 v ,形成不变式 v* (

源码中选择划分元的方法:
 1)当数组大小为 size=7 时 ,取数组中间元素作为划分元。int n=m>>1;(此方法值得借鉴)。
 2)当数组大小size大于7小于等于40时,取首、中、末三个元素中间大小的元素作为划分元。
 3)当数组大小 size>40 时 ,从待排数组中较均匀的选择9个元素,选出一个伪中数做为划分元。
 普通的快速排序算法,经过一次划分后,将划分元排到素组较中间的位置,左边的元素小于划分元,右边的元素大于划分元,而没有将与划分元相等的元素放在其附近,这一点,在Arrays.sort()中得到了较大的优化。

举例:15、93、15、41、6、15、22、7、15、20
   举例:15、93、15、41、6、15、22、7、15、20

因size大于7小于等于40 ,所以在15、6、和20 中选择v = 15 作为划分元。
  经过一次换分后: 15、15、7、6、41、20、22、93、15、15. 与划分元相等的元素都移到了素组的两边。
  接下来将与划分元相等的元素移到数组中间来,形成:7、6、15、15、15、15、41、20、22、93.
  最后递归对两个区间进行排序[7、6]和[41、20、22、93].,所以在15、6、和20 中选择v = 15 作为划分元。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容