动态规划设计:最大子数组

读完本文,你可以去力扣拿下如下题目:

53.最大子序和

-----------

最大子数组问题和前文讲过的 经典动态规划:最长递增子序列 的套路非常相似,代表着一类比较特殊的动态规划问题的思路:

title

思路分析

其实第一次看到这道题,我首先想到的是滑动窗口算法,因为我们前文说过嘛,滑动窗口算法就是专门处理子串/子数组问题的,这里不就是子数组问题么?

但是,稍加分析就发现,这道题还不能用滑动窗口算法,因为数组中的数字可以是负数

滑动窗口算法无非就是双指针形成的窗口扫描整个数组/子串,但关键是,你得清楚地知道什么时候应该移动右侧指针来扩大窗口,什么时候移动左侧指针来减小窗口。

而对于这道题目,你想想,当窗口扩大的时候可能遇到负数,窗口中的值也就可能增加也可能减少,这种情况下不知道什么时机去收缩左侧窗口,也就无法求出「最大子数组和」。

解决这个问题需要动态规划技巧,但是 dp 数组的定义比较特殊。按照我们常规的动态规划思路,一般是这样定义 dp 数组:

nums[0..i] 中的「最大的子数组和」为 dp[i]

如果这样定义的话,整个 nums 数组的「最大子数组和」就是 dp[n-1]。如何找状态转移方程呢?按照数学归纳法,假设我们知道了 dp[i-1],如何推导出 dp[i] 呢?

如下图,按照我们刚才对 dp 数组的定义,dp[i] = 5 ,也就是等于 nums[0..i] 中的最大子数组和:

image

那么在上图这种情况中,利用数学归纳法,你能用 dp[i] 推出 dp[i+1] 吗?

实际上是不行的,因为子数组一定是连续的,按照我们当前 dp 数组定义,并不能保证 nums[0..i] 中的最大子数组与 nums[i+1] 是相邻的,也就没办法从 dp[i] 推导出 dp[i+1]

所以说我们这样定义 dp 数组是不正确的,无法得到合适的状态转移方程。对于这类子数组问题,我们就要重新定义 dp 数组的含义:

nums[i] 为结尾的「最大子数组和」为 dp[i]

PS:我认真写了 100 多篇原创,手把手刷 200 道力扣题目,全部发布在 labuladong的算法小抄,持续更新。建议收藏,按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

这种定义之下,想得到整个 nums 数组的「最大子数组和」,不能直接返回 dp[n-1],而需要遍历整个 dp 数组:

int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
    res = Math.max(res, dp[i]);
}
return res;

依然使用数学归纳法来找状态转移关系:假设我们已经算出了 dp[i-1],如何推导出 dp[i] 呢?

可以做到,dp[i] 有两种「选择」,要么与前面的相邻子数组连接,形成一个和更大的子数组;要么不与前面的子数组连接,自成一派,自己作为一个子数组。

如何选择?既然要求「最大子数组和」,当然选择结果更大的那个啦:

// 要么自成一派,要么和前面的子数组合并
dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);

综上,我们已经写出了状态转移方程,就可以直接写出解法了:

int maxSubArray(int[] nums) {
    int n = nums.length;
    if (n == 0) return 0;
    int[] dp = new int[n];
    // base case
    // 第一个元素前面没有子数组
    dp[0] = nums[0];
    // 状态转移方程
    for (int i = 1; i < n; i++) {
        dp[i] = Math.max(nums[i], nums[i] + dp[i - 1]);
    }
    // 得到 nums 的最大子数组
    int res = Integer.MIN_VALUE;
    for (int i = 0; i < n; i++) {
        res = Math.max(res, dp[i]);
    }
    return res;
}

以上解法时间复杂度是 O(N),空间复杂度也是 O(N),较暴力解法已经很优秀了,不过注意到 dp[i] 仅仅和 dp[i-1] 的状态有关,那么我们可以进行「状态压缩」,将空间复杂度降低:

int maxSubArray(int[] nums) {
    int n = nums.length;
    if (n == 0) return 0;
    // base case
    int dp_0 = nums[0];
    int dp_1 = 0, res = dp_0;

    for (int i = 1; i < n; i++) {
        // dp[i] = max(nums[i], nums[i] + dp[i-1])
        dp_1 = Math.max(nums[i], nums[i] + dp_0);
        dp_0 = dp_1;
        // 顺便计算最大的结果
        res = Math.max(res, dp_1);
    }
    
    return res;
}

最后总结

虽然说动态规划推状态转移方程确实比较玄学,但大部分还是有些规律可循的。

今天这道「最大子数组和」就和「最长递增子序列」非常类似,dp 数组的定义是「以 nums[i] 为结尾的最大子数组和/最长递增子序列为 dp[i]」。因为只有这样定义才能将 dp[i+1]dp[i] 建立起联系,利用数学归纳法写出状态转移方程。

_____________

我的 在线电子书 有 100 篇原创文章,手把手带刷 200 道力扣题目,建议收藏!对应的 GitHub 算法仓库 已经获得了 70k star,欢迎标星!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容