ETL讲解(很详细!!!)

记录一下

ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程,目的是将企业中的分散、零乱、标准不统一的数据整合到一起,为企业的决策提供分析依据。ETL是BI项目重要的一个环节。 通常情况下,在BI项目中ETL会花掉整个项目至少1/3的时间,ETL设计的好坏直接关接到BI项目的成败。

  ETL的设计分三部分:数据抽取、数据的清洗转换、数据的加载。在设计ETL的时候我们也是从这三部分出发。数据的抽取是从各个不同的数据源抽取到ODS(Operational Data Store,操作型数据存储)中——这个过程也可以做一些数据的清洗和转换),在抽取的过程中需要挑选不同的抽取方法,尽可能的提高ETL的运行效率。ETL三个部分中,花费时间最长的是“T”(Transform,清洗、转换)的部分,一般情况下这部分工作量是整个ETL的2/3。数据的加载一般在数据清洗完了之后直接写入DW(Data Warehousing,数据仓库)中去。

  ETL的实现有多种方法,常用的有三种。一种是借助ETL工具(如Oracle的OWB、SQL Server 2000的DTS、SQL Server2005的SSIS服务、Informatic等)实现,一种是SQL方式实现,另外一种是ETL工具和SQL相结合。前两种方法各有各的优缺点,借助工具可以快速的建立起ETL工程,屏蔽了复杂的编码任务,提高了速度,降低了难度,但是缺少灵活性。SQL的方法优点是灵活,提高ETL运行效率,但是编码复杂,对技术要求比较高。第三种是综合了前面二种的优点,会极大地提高ETL的开发速度和效率。

一、 数据的抽取(Extract)

  这一部分需要在调研阶段做大量的工作,首先要搞清楚数据是从几个业务系统中来,各个业务系统的数据库服务器运行什么DBMS,是否存在手工数据,手工数据量有多大,是否存在非结构化的数据等等,当收集完这些信息之后才可以进行数据抽取的设计。

 1、对于与存放DW的数据库系统相同的数据源处理方法

  这一类数据源在设计上比较容易。一般情况下,DBMS(SQLServer、Oracle)都会提供数据库链接功能,在DW数据库服务器和原业务系统之间建立直接的链接关系就可以写Select 语句直接访问。

  2、对于与DW数据库系统不同的数据源的处理方法

  对于这一类数据源,一般情况下也可以通过ODBC的方式建立数据库链接——如SQL Server和Oracle之间。如果不能建立数据库链接,可以有两种方式完成,一种是通过工具将源数据导出成.txt或者是.xls文件,然后再将这些源系统文件导入到ODS中。另外一种方法是通过程序接口来完成。

 3、对于文件类型数据源(.txt,.xls),可以培训业务人员利用数据库工具将这些数据导入到指定的数据库,然后从指定的数据库中抽取。或者还可以借助工具实现。

  4、增量更新的问题

  对于数据量大的系统,必须考虑增量抽取。一般情况下,业务系统会记录业务发生的时间,我们可以用来做增量的标志,每次抽取之前首先判断ODS中记录最大的时间,然后根据这个时间去业务系统取大于这个时间所有的记录。利用业务系统的时间戳,一般情况下,业务系统没有或者部分有时间戳。

二、数据的清洗转换(Cleaning、Transform)

一般情况下,数据仓库分为ODS、DW两部分。通常的做法是从业务系统到ODS做清洗,将脏数据和不完整数据过滤掉,在从ODS到DW的过程中转换,进行一些业务规则的计算和聚合。

  1、 数据清洗

  数据清洗的任务是过滤那些不符合要求的数据,将过滤的结果交给业务主管部门,确认是否过滤掉还是由业务单位修正之后再进行抽取。

不符合要求的数据主要是有不完整的数据、错误的数据、重复的数据三大类。

 (1)不完整的数据:这一类数据主要是一些应该有的信息缺失,如供应商的名称、分公司的名称、客户的区域信息缺失、业务系统中主表与明细表不能匹配等。对于这一类数据过滤出来,按缺失的内容分别写入不同Excel文件向客户提交,要求在规定的时间内补全。补全后才写入数据仓库。

(2)错误的数据:这一类错误产生的原因是业务系统不够健全,在接收输入后没有进行判断直接写入后台数据库造成的,比如数值数据输成全角数字字符、字符串数据后面有一个回车操作、日期格式不正确、日期越界等。这一类数据也要分类,对于类似于全角字符、数据前后有不可见字符的问题,只能通过写SQL语句的方式找出来,然后要求客户在业务系统修正之后抽取。日期格式不正确的或者是日期越界的这一类错误会导致ETL运行失败,这一类错误需要去业务系统数据库用SQL的方式挑出来,交给业务主管部门要求限期修正,修正之后再抽取。

 (3)重复的数据:对于这一类数据——特别是维表中会出现这种情况——将重复数据记录的所有字段导出来,让客户确认并整理。

  数据清洗是一个反复的过程,不可能在几天内完成,只有不断的发现问题,解决问题。对于是否过滤,是否修正一般要求客户确认,对于过滤掉的数据,写入Excel文件或者将过滤数据写入数据表,在ETL开发的初期可以每天向业务单位发送过滤数据的邮件,促使他们尽快地修正错误,同时也可以做为将来验证数据的依据。数据清洗需要注意的是不要将有用的数据过滤掉,对于每个过滤规则认真进行验证,并要用户确认。

  2、 数据转换

  数据转换的任务主要进行不一致的数据转换、数据粒度的转换,以及一些商务规则的计算。

 (1)不一致数据转换:这个过程是一个整合的过程,将不同业务系统的相同类型的数据统一,比如同一个供应商在结算系统的编码是XX0001,而在CRM中编码是YY0001,这样在抽取过来之后统一转换成一个编码。

(2)数据粒度的转换:业务系统一般存储非常明细的数据,而数据仓库中数据是用来分析的,不需要非常明细的数据。一般情况下,会将业务系统数据按照数据仓库粒度进行聚合。

(3)商务规则的计算:不同的企业有不同的业务规则、不同的数据指标,这些指标有的时候不是简单的加加减减就能完成,这个时候需要在ETL中将这些数据指标计算好了之后存储在数据仓库中,以供分析使用。

三、ETL日志、警告发送

  1、 ETL日志

  ETL日志分为三类。

一类是执行过程日志,这一部分日志是在ETL执行过程中每执行一步的记录,记录每次运行每一步骤的起始时间,影响了多少行数据,流水账形式。

一类是错误日志,当某个模块出错的时候写错误日志,记录每次出错的时间、出错的模块以及出错的信息等。

第三类日志是总体日志,只记录ETL开始时间、结束时间是否成功信息。如果使用ETL工具,ETL工具会自动产生一些日志,这一类日志也可以作为ETL日志的一部分。

记录日志的目的是随时可以知道ETL运行情况,如果出错了,可以知道哪里出错。

  2、 警告发送

  如果ETL出错了,不仅要形成ETL出错日志,而且要向系统管理员发送警告。发送警告的方式多种,一般常用的就是给系统管理员发送邮件,并附上出错的信息,方便管理员排查错误。

ETL是BI项目的关键部分,也是一个长期的过程,只有不断的发现问题并解决问题,才能使ETL运行效率更高,为BI项目后期开发提供准确与高效的数据。

后记

做数据仓库系统,ETL是关键的一环。说大了,ETL是数据整合解决方案,说小了,就是倒数据的工具。回忆一下工作这么长时间以来,处理数据迁移、转换的工作倒还真的不少。但是那些工作基本上是一次性工作或者很小数据量。可是在数据仓库系统中,ETL上升到了一定的理论高度,和原来小打小闹的工具使用不同了。究竟什么不同,从名字上就可以看到,人家已经将倒数据的过程分成3个步骤,E、T、L分别代表抽取、转换和装载。

其实ETL过程就是数据流动的过程,从不同的数据源流向不同的目标数据。但在数据仓库中,

ETL有几个特点,

一是数据同步,它不是一次性倒完数据就拉到,它是经常性的活动,按照固定周期运行的,甚至现在还有人提出了实时ETL的概念。

二是数据量,一般都是巨大的,值得你将数据流动的过程拆分成E、T和L。

    现在有很多成熟的工具提供ETL功能,且不说他们的好坏。从应用角度来说,ETL的过程其实不是非常复杂,这些工具给数据仓库工程带来和很大的便利性,特别是开发的便利和维护的便利。但另一方面,开发人员容易迷失在这些工具中。举个例子,VB是一种非常简单的语言并且也是非常易用的编程工具,上手特别快,但是真正VB的高手有多少?微软设计的产品通常有个原则是“将使用者当作傻瓜”,在这个原则下,微软的东西确实非常好用,但是对于开发者,如果你自己也将自己当作傻瓜,那就真的傻了。ETL工具也是一样,这些工具为我们提供图形化界面,让我们将主要的精力放在规则上,以期提高开发效率。从使用效果来说,确实使用这些工具能够非常快速地构建一个job来处理某个数据,不过从整体来看,并不见得他的整体效率会高多少。问题主要不是出在工具上,而是在设计、开发人员上。他们迷失在工具中,没有去探求ETL的本质。可以说这些工具应用了这么长时间,在这么多项目、环境中应用,它必然有它成功之处,它必定体现了ETL的本质。如果我们不透过表面这些工具的简单使用去看它背后蕴涵的思想,最终我们作出来的东西也就是一个个独立的job,将他们整合起来仍然有巨大的工作量。大家都知道“理论与实践相结合”,如果在一个领域有所超越,必须要在理论水平上达到一定的高度.

人一定要靠自己

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342