numpy h5py scipy
读取mat文件并存为npy格式文件
具体见代码,注意h5py的转置问题
import numpy as np
from scipy import io
mat = io.loadmat('yourfile.mat')
# 如果报错:Please use HDF reader for matlab v7.3 files
# 改为下一种方式读取
import h5py
mat = h5py.File('yourfile.mat')
# mat文件里可能有多个cell,各对应着一个dataset
# 可以用keys方法查看cell的名字, 现在要用list(mat.keys()),
# 另外,读取要用data = mat.get('名字'), 然后可以再用Numpy转为array
print(mat.keys())
# 可以用values方法查看各个cell的信息
print(mat.values())
# 可以用shape查看维度信息
print(mat['your_dataset_name'].shape)
# 注意,这里看到的shape信息与你在matlab打开的不同
# 这里的矩阵是matlab打开时矩阵的转置
# 所以,我们需要将它转置回来
mat_t = np.transpose(mat['your_dataset_name'])
# mat_t 是numpy.ndarray格式
# 再将其存为npy格式文件
np.save('yourfile.npy', mat_t)
npy文件的读取很简单
import numpy as np
matrix = np.load('yourfile.npy')
可以重新读取npy文件保存为mat文件
- 方法一(在MATLAB双击打开时遇到了错误:Unable to read MAT-file *********.mat. Not a binary MAT-file. Try load -ASCII to read as text. ):
import numpy as np
matrix = np.load('yourfile.npy')
f = h5py.File('yourfile.mat', 'w')
f.create_dataset('dataname', data=matrix)
# 这里不会将数据转置
- 方法二(使用scipy):
from scipy import io
mat = np.load('rlt_gene_features.npy-layer-3-train.npy')
io.savemat('gene_features.mat', {'gene_features': mat})