极简数据分析法:3个步骤+3个模型

数据分析不应该只属于技术流派,而是一种思维习惯,用来辅助我们梳理业务流程,找到优化方向。能达成目的的数据分析才是真正的数据分析。

数据分析很简单。

技术流的老司机,左手SQL右手BI,溜的飞起。其实SQL、Python是数据挖掘;PPT、BI是数据展示。

学会了当然很棒,不会也没关系。

数据分析不是技术流,是一种思维习惯;能帮你梳理业务,找到方向,达成目的数据分析,才是真的数据分析。

而建立这种思维习惯,你只需要记住3个步骤,掌握3个模型。

这就是极简数据分析法。

建议收藏以便翻阅,也可以分享给想要提升数据分析能力的朋友和运营萌新。

                                          ❶

                                    3个步骤

这三个步骤是:确定目标、列出公式、确认元素

我们以某互联网金融公司A为例。

假设A公司正准备上市,当前核心目标为利润。

针对利润,我们列出公式。上面公式中,利润拆解成了 付费用户数、投资金额、投资时长、对应利率 四个元素。

其中对应利率取决于资产端,跟用户侧关系不大。

图片发自简书App

因此,如果我想提升核心KPI—利润,就要尽可能的提升付费用户、投资金额和投资时长。

恭喜你,已经找到了发力点。

注意,核心目标会随着业务发展不断变化,比如用户运营,App初期看重新增,中期看重转化,后期看重留存。

如果仍然难以确定,看看你的核心KPI。

                                          ❷

                              3个模型

确认需要提升的元素后,问题来了:

  • 如何提升每个元素的量级?

  • 怎样制定策略,分配资源?

  • 如何验证策略是否有效?

你需要掌握3个模型:

A. 漏斗模型

适用范围:需要多个步骤达成的元素。比如投资用户数。

达到投资用户的状态,需要多个步骤。每个步骤都存在转化率,放在一起就成了层层缩减的漏斗。

图片发自简书App

漏斗模型作用:提升量级。通过提升转化率,提升单个元素量级。

有了漏斗模型,就可以分析每层漏斗衰减的原因。有些原因显而易见,有些需要做A/B测试。你可以逐层提升转化;也可以改变用户路径,减少漏斗层级。

比如,支持H5内投资的理财产品漏斗,要比下载App投资的漏斗少2个层级,转化率要高很多。

图片发自简书App

盈利还是亏损,有时只取决于一个漏斗。

注意,优化漏斗是个长期过程,需要每天关注。

B. 多维坐标

适用范围:具有多重属性的单个元素。

比如,本文公式中的投资用户,就有投资金额和投资时长两个属性。可以将其作为横纵坐标轴,把所有投资用户分成四组。

图片发自简书App

电商品类运营有个经典坐标,按流水和利润划分品类。

用户运营也有个经典坐标,叫RFM坐标。

  • R=最近一次行为(Recency)

  • F=行为频率(Frequency)

  • M=行为量级(Monetary)

这里的行为指和你的核心目标密切相关的行为。比如在本文的金融产品中,就是投资。

  • R代表可触达,毕竟6个月没来投资的用户,说不定都卸载了,甚至已经忘了你这个App;

  • F代表忠实度,高频次的使用App,虽然ta可能每次只投几块钱的活期;

  • M代表价值,比如累计投了50万,这可是个高净值用户。

多维坐标作用:精细化运营。

通过多维坐标将用户分组,对不同组用户采取对应的运营措施。

首先,一定有一个象限是好的。

比如下面的坐标图,高金额、高时长的A象限,就是好的。

图片发自简书App

A象限的用户,是核心用户(俗称爸爸),公司的现金牛,你的重点运营对象。

A象限往往占整体流水的80%。你的活动效果好不好,运营策略给不给力,往往要看这些爸爸们的反应。你甚至可以建立一个微信群,把爸爸们都拉进去,多多交流,做好服务,时不时发个红包啥的。

接下来,你要把B、D两个象限的用户往A象限拉。

D象限,是高潜力用户。可以定向发一些大额度长期标的优惠券,比如投20w,6个月,送3000元红包。提升他们的投资时长。

B象限,是高忠诚用户。虽然可能没什么钱,但使用频次很高。可以定向发送梯度优惠券,比如投资1000送10元,投5000送投资80元,投10000送200元,逐步拉升他们的投资额度。

A是现金牛,D是A的孵化器,B用户价值低但忠诚度高,产品开拓新场景后也有可能进化成现金牛。

重要性,A>D>B。

资源有限时,请参照此排序。

多维坐标的适用范围非常广。比如一篇文章可以按阅读量和点赞率做一个二维坐标,分析下如何写出叫好又叫座的文章。

比如你可以按事物价值的精力投入和价值衰减速度建立二维坐标,优化你的精力分布。

C. 分组表格

适用范围:随时间变化的用户属性元素。

比如投资用户数。

分组表格的原理,是将某一周(或一天,一个月)进入App的新用户,作为单独的一组用户。

图片发自简书App

上面的表格,就是投资用户分组表格。

横向看,是某组用户的投资用户数,随时间变化的留存情况。

比如第一行,第一周共新增200名投资用户,到第二周留存100名,到第三周留存80名……

纵向看,是某一周投资用户的构成情况。比如第三列,显示第三周的730个投资用户,是由第一周进入的80个+第二周进入的250个+第三周进入的400个构成的。

通过投资用户分组表格,我们还能计算出留存率分组表格,只需将每一行,每周的留存用户除以对应的新增用户数,即可获得下表:

图片发自简书App

这个表格也可以做适度变形,比如将所有数据向左对齐:

作用:监测&验证。

分组表格可以帮你分析清楚一个复杂元素的变化。

比如你发现投资用户数在提升,你其实很难判定原因,因为投资用户是由很多组用户构成的。

因此提升的可能原因有很多,比如:

  • 新增用户量级增大

  • 渠道质量提高

  • 运营策略起作用

这时候,把留存率分组表格掏出来瞅瞅。

图片发自简书App

先看新增用户数这一列,发现新增用户量级确实在提升;

纵向看每一列,比较不同组用户留存。发现次周留存确实上升了,说明运营策略可能起到了一定作用。但后续的留存情况都在下降,可能是渠道质量在下降。

横向看,留存始终没能稳定在一个值,说明产品的粘性还不够。

是不是很溜?

                                        ❸

                              总结

确定核心目标,通过公式拆解成元素,找到发力点。

用漏斗模型提升元素量级;用多维坐标进行精细化运营,更好的分配精力和资源;用分组表格检验效果,监测数据。

以上,就是极简数据分析法。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容