Floyd-Warshall算法,简称Floyd算法,用于求解任意两点间的最短距离。如下图,表示一个用邻接矩阵表示的图,如何求任意两点之间的距离呢?
当任意两点之间不允许经过第三个点时,这些点之间的最短距离就是初始距离。
第一步:只允许经过0号顶点,求任意两点之间的最短路程。这时候只需要判断map[i][0] + map[0][j] 是否比map[i][j]要小即可。map[i][j]表示从i号顶点到j号顶点之间的路程,map[i][0] + map[0][j]表示的是从i号顶点先到0号顶点,再从0号顶点到j号顶点的路程之和。代码如下:
<pre>
//经过0号顶点
for i in 0..<map.count {
for j in 0..<map.count {
if map[i][j] > (map[i][0] + map[0][j]) {
map[i][j] = (map[i][0] + map[0][j])
}
}
}
</pre>第二部:在第一步的基础上,只允许经过1号顶点
<pre>
//经过1号顶点
for i in 0..<map.count {
for j in 0..<map.count {
if map[i][j] > (map[i][1] + map[1][j]) {
map[i][j] = (map[i][1] + map[1][j])
}
}
}
</pre>以此类推,最后允许通过所有的顶点作为中转,就能得出任意两点之间的最短路程。Floyd-Warshall算法的核心代码只有以下五行!
<pre>
for k in 0..<map.count {
for i in 0..<map.count {
for j in 0..<map.count {
if map[i][j] > (map[i][k] + map[k][j]) {
map[i][j] = (map[i][k] + map[k][j])
}
}
}
}
</pre>完整代码如下:
<pre>
let max:Int = 10000 //用来表示最大值∞,表示两个顶点之间无边
var map = [[0, 2, 6, 4],
[max, 0, 3, max],
[7, max, 0, 1],
[5, max, 12, 0]]
func floyd(map: inout [Array<Int>]) {
for k in 0..<map.count {
for i in 0..<map.count {
for j in 0..<map.count {
if map[i][j] > (map[i][k] + map[k][j]) {
map[i][j] = (map[i][k] + map[k][j])
}
}
}
}
}
floyd(map: &map)
print(map) //[[0, 2, 5, 4], [9, 0, 3, 4], [6, 8, 0, 1], [5, 7, 10, 0]]
</pre>