杨辉三角的几种解法(python)

1. 计算杨辉三角,普通法

#计算杨辉三角 普通法
triangle = [[1],[1,1]]
for i in range(2,6):
    swap = triangle[i-1]
    cul = [1]
    for j in range(i-1):
        cul.append(swap[j]+swap[j+1])
    cul.append(1)
    triangle.append(cul)
triangle
#计算杨辉三角 普通法
triangle = [[1],[1,1]]
n = 8
for i in range(2,n):
    swap = triangle[-1]
    cul = [1]
    for j in range(len(swap)-1):
        cul.append(swap[j] + swap[j+1])
    cul.append(1)
    triangle.append(cul)
print(triangle)

2. 计算杨辉三角 补0法

#计算杨辉三角 补0法/在每行末尾补零
tra = [[1]]
for i in range(1,6):
    swap =  tra[i-1]+[0]
    cul = list()
    for j in range(i+1):
        cul.append(swap[j-1]+swap[j])
    tra.append(cul)
print(tra)
#计算杨辉三角 补0法
triangle = [[1]]
n = 7
for i in range(1,n):
    swap = triangle[i-1]+[0]
    cul = [1]
    for j in range(len(swap)-1):
        cul.append(swap[j]+swap[j+1])
    triangle.append(cul)
print(triangle)

3. 杨辉三角,对称法

#杨辉三角,对称法
n=6
triangle = [[1],[1,1]]
for i in range(2,n):
    tmp = triangle[-1]
    cul = [1] * (i+1)
    for j in range(i//2):
        cul[j+1] = tmp[j]+tmp[j+1]
        if i != 2j:
            cul[-j-2] = cul[j+1]
    triangle.append(cul)
triangle

中点的确定:
[1]
[1,1]
[1,2,1]
[1,3,3,1]
[1,4,6,4,1]
[1,5,10,10,5,1]


把整个杨辉三角看成一个左对齐的二维矩阵。

i 位置 中点索引
i == 2时 在第3行 中点的列索引j==1
i == 3时 在第4行 无中点
i == 4时 在第5行 中点的列索引j==2

得到以下规律,如果i==2j,则有中点。


4. 杨辉三角,单列表方法

#杨辉三角,单列表解决
n = 6
row = [1] * n
for i in range(n):
    z = 1
    offset = n - i
    for j in range(1,i//2+1):
        val = z + row[j]
        z = row[j]
        row[j] = val
        if i != 2*j:
            row[-j - offset] = val
    print(row[:i+1])

5. 新旧两行,一次性开辟新行

m = 6
#新旧两行,一次性开辟新行
ordline = []
for i in range(m):
    newline = [1] * (i+1)
    for j in range(2,i+1):
        newline[j-1] = oldline[j-1]+oldline[j-2]
    oldline = newline
    print(newline)

这几种方法都是利用杨辉三角的性质:

每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和。

其中通过计算比较,第五种方法一次性开辟内存空间的方法要比第一种方法中,每次计算通过append添加新的内存空间要快。

未完续待。。。。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容

  • 想要给你做很多好吃的.... 慢慢的有条不紊的做些喜欢的食物,给喜欢的人吃。
    曼曼冰冰阅读 88评论 1 1
  • expo的官方网站:https://expo.io/tools 下载安装包 用命令行安装expo: sudo ch...
    菇凉大大阅读 395评论 0 0
  • 人的一生就是在不断的失去。
    一米阳光12阅读 132评论 0 0
  • 勾心斗角,你虞我诈,嫉妒眼红充斥着很多职场中的人和事。 我曾经在一间香港人开的手袋厂做过QC,主要做查货工作。 老...
    和风轻和阅读 549评论 0 6