Exercise_10: The Solar System

We begin with the simplest situation,a sun and a single planet,and investigate a few of the properties of this model solar system.

solar system.gif

solar system.gif

According to Newton's law of gravitation the magnitude of the force is given by

![](http://latex.codecogs.com/png.latex?F_G=\frac{G M_S M_E}{r^2})

and we can obtain that:

![](http://latex.codecogs.com/png.latex?\frac{dv_x}{dt}=-\frac{GM_s M_E x}{r^3})


![](http://latex.codecogs.com/png.latex?\frac{dv_y}{dt}=-\frac{GM_s y}{r^3})

and if we use astronomical units ,AU; and measure time in years, we find

![](http://latex.codecogs.com/png.latex?G M_S=v^2 r=4 \pi^2 AU2/yr2)

we next convert the equations of motion into difference equations in preparation for constructing a computational solution.We find

![](http://latex.codecogs.com/png.latex?v_{x,i+1}=v_{x,i}-\frac{4\pi^2 x_i}{r_i^3}\Delta t)
![](http://latex.codecogs.com/png.latex?x_{i+1}=x_i +v_{x,i+1}\Delta t)
![](http://latex.codecogs.com/png.latex?v_{y,i+1}=v_{y,i}-\frac{4\pi^2 y_i}{r_i^3}\Delta t)
![](http://latex.codecogs.com/png.latex?y_{i+1}=y_i+v_{y,i+1}\Delta t)

and I imitate it by python ,and I gained that:

Earth Orbiting the Sun

code1,as follows:

#coding:utf-8
import pylab as pl
import numpy as np
import math
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import animation

class circle():
    def __init__(self,x0=1,y0=0,t0=0,vx0=0,vy0=2*math.pi,dt0=0.001,total_time=10):
        self.x=[x0]
        self.y=[y0]
        self.vx=[vx0]
        self.vy=[vy0]
        self.R=x0**2+y0**2
        self.t=[t0]
        self.dt=dt0
        self.T=total_time
    def run(self):
        for i in range(int(self.T/self.dt)):
            vx=self.vx[-1]-(4*math.pi**2*self.x[-1]/self.R**2)*self.dt
            vy=self.vy[-1]-(4*math.pi**2*self.y[-1]/self.R**2)*self.dt
            self.vx.append(vx)
            self.vy.append(vy)
            self.x.append(self.vx[-1] * self.dt + self.x[-1])
            self.y.append(self.vy[-1] * self.dt + self.y[-1])
    def show(self):
        pl.plot(self.x, self.y, '-', label='tra')
        pl.xlabel('x(AU)')
        pl.ylabel('y(AU)')
        pl.title('Earth orbiting the Sun')
        pl.xlim(-1.2,1.2)
        pl.ylim(-1.2,1.2)
        pl.axis('equal')
        pl.show()
a=circle()
a.run()
a.show()

we can use the animation of matplotlib to gain the cartoon,

add follow codes:

 def drawtrajectory(self):
        fig=plt.figure()
        ax = plt.axes(title=('Earth orbiting the Sun'),
                      aspect='equal', autoscale_on=False,
                      xlim=(-1.1, 1.1), ylim=(-1.1, 1.1),
                      xlabel=('x'),ylabel=('y'))
        line=ax.plot([],[],'b')
        point=ax.plot([],[],'ro',markersize=10)
        images=[]
        def init():
            line=ax.plot([],[],'b',markersize=8)
            point=ax.plot([],[],'ro',markersize=10)
            return line,point
        def anmi(i):
            ax.clear()
            line=ax.plot(self.x[0:10*i],self.y[0:10*i],'b',markersize=8)
            point=ax.plot(self.x[10*i-1:10*i],self.y[10*i-1:10*i],'ro',markersize=10)
            return line,point
        anmi=animation.FuncAnimation(fig,anmi,init_func=init,frames=10000,interval=1,
                                     blit=False,repeat=False)

we get follow gif

Earth Orbiting the Sun

If we consider the reduced mass

![](http://latex.codecogs.com/png.latex?\mu\equiv \frac{m1m2}{m1+m2})

The orbital trajectory for a body of reduced mass is given in polar coordinates by

![](http://latex.codecogs.com/png.latex?\frac{d^2}{dt ^2} (\frac{1}{r})+\frac{1}{r}=-\frac{\mu r2}{L2} F(r))
consider


we have
![](http://latex.codecogs.com/png.latex?r=(\frac{L^2}{\mu G M_s M_P} )\frac{1}{1-e cos\theta })
so

Then let us suppose that the gravitational force is of the form

![](http://latex.codecogs.com/png.latex?F_G=\frac{GM_S M_E}{r^{\beta}})
then I get
![](http://latex.codecogs.com/png.latex?v_{x,i+1}=v_{x,i}-\frac{4\pi^2 x_i}{r_i^{\beta+1}}\Delta t)
![](http://latex.codecogs.com/png.latex?x_{i+1}=x_i +v_{x,i+1}\Delta t)
![](http://latex.codecogs.com/png.latex?v_{y,i+1}=v_{y,i}-\frac{4\pi^2 y_i}{r_i^{\beta+1}}\Delta t)
![](http://latex.codecogs.com/png.latex?y_{i+1}=y_i+v_{y,i+1}\Delta t)

the picture


Beta=3.0 t=0.3yr v=1.7pi.png
Beta=2.5,t=1.5yr,v=1.7pi.png
Beta=2.3,t=10yr,v=1.7pi.png

code

#coding:utf-8
import pylab as pl
import numpy as np
import math
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from matplotlib import animation

class circle():
    def __init__(self,x0=1,y0=0,t0=0,vx0=0,vy0=1.7*math.pi,dt0=0.001,Beta=2.3,total_time=10):
        self.x=[x0]
        self.y=[y0]
        self.vx=[vx0]
        self.vy=[vy0]
        self.t=[t0]
        self.dt=dt0
        self.T=total_time
        self.beta=Beta
    def run(self):
        for i in range(int(self.T/self.dt)):
            R=(self.x[-1]**2+self.y[-1]**2)**0.5
            vx=self.vx[-1]-(4*math.pi**2*self.x[-1]/R**(self.beta+1))*self.dt
            vy=self.vy[-1]-(4*math.pi**2*self.y[-1]/R**(self.beta+1))*self.dt
            self.vx.append(vx)
            self.vy.append(vy)
            self.x.append(self.vx[-1] * self.dt + self.x[-1])
            self.y.append(self.vy[-1] * self.dt + self.y[-1])
    def show(self):
        pl.plot(self.x, self.y, '-', label='tra')
        pl.xlabel('x(AU)')
        pl.ylabel('y(AU)')
        pl.title('Earth orbiting the Sun')
        pl.xlim(-1,1)
        pl.ylim(-1,1)
        pl.axis('equal')
        pl.show()
    def drawtrajectory(self):
        fig=plt.figure()
        ax = plt.axes(title=('Earth orbiting the Sun '),
                      aspect='equal', autoscale_on=False,
                      xlim=(-1.1, 1.1), ylim=(-1.1, 1.1),
                      xlabel=('x'),ylabel=('y'))
        line=ax.plot([],[],'b')
        point=ax.plot([],[],'ro',markersize=10)
        images=[]
        def init():
            line=ax.plot([],[],'b',markersize=8)
            point=ax.plot([],[],'ro',markersize=10)
            return line,point
        def anmi(i):
            ax.clear()
            line=ax.plot(self.x[0:10*i],self.y[0:10*i],'b',markersize=8)
            point=ax.plot(self.x[10*i-1:10*i],self.y[10*i-1:10*i],'ro',markersize=10)
            return line,point
        anmi=animation.FuncAnimation(fig,anmi,init_func=init,frames=100000,interval=1,
                                     blit=False,repeat=False)
        plt.show()


a=circle()
a.run()
a.show()
#a.drawtrajectory()

then we get the animation

Beta=3.0,v=2.0pi,t=200yr

for the problem 4.8, I use the follow code to calculate

import pylab as pl
import numpy as np
import math
class circle():
    def __init__(self,x0=0.72,y0=0,t0=0,vx0=0,dt0=0.001,Beta=2.0,total_time=10,e0=0.007):
        self.x=[x0]
        self.y=[y0]
        self.vx=[vx0]
        self.vy=[]
        self.t=[t0]
        self.dt=dt0
        self.T=total_time
        self.beta=Beta
        self.e=e0

    def run(self):
        vy0=2*math.pi*(1-self.e)/math.sqrt(1+self.e)
        self.vy.append(vy0)
        for i in range(int(self.T/self.dt)):
            R=(self.x[-1]**2+self.y[-1]**2)**0.5
            vx=self.vx[-1]-(4*math.pi**2*self.x[-1]/R**(self.beta+1))*self.dt
            vy=self.vy[-1]-(4*math.pi**2*self.y[-1]/R**(self.beta+1))*self.dt
            self.vx.append(vx)
            self.vy.append(vy)
            self.x.append(self.vx[-1] * self.dt + self.x[-1])
            self.y.append(self.vy[-1] * self.dt + self.y[-1])
            self.t.append(self.t[-1]+self.dt)
            if(self.y[-1]<0):
                a=(self.x[0]-self.x[-1])/2
                T=2*self.t[-1]
                k=T**2/a**3
                break
        print(k)
a=circle()
a.run()

For Venus, I just get the value

and others can just be got by the similar way 2333

Acknowledgements

Thanks for Nemo's or (卢江玮的) help

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,552评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,666评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,519评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,180评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,205评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,344评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,781评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,449评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,635评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,467评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,515评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,217评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,775评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,851评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,084评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,637评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,204评论 2 341

推荐阅读更多精彩内容