1、定义不同
导数又名微商,当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数。
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。
2、本质不同
导数是描述函数变化的快慢,微分是描述函数变化的程度。导数是函数的局部性质,一个函数在某一点的导数描述了这个函数在这一点附近的变化率。而微分是一个函数表达式,用于自变量产生微小变化时计算因变量的近似值。
向左转|向右转
3、几何意义不同
导数的几何意义是切线的斜率,微分的几何意义是切线纵坐标的增量。因此微分可以用来做近似运算和误差估计。最简单的一元情况下,导数是一个确定的数值,几何意义是切线斜率,物理意义是瞬时速度。
另一个解释:
导数是函数上切点的斜率
k=tan(y/x)
而这里的y是△y减去微小的部分
剩下的就是dy,
所以k=dy/dx
这里的dx就是△x,并没有像△y那样,还要减去一小部分
另一个解释:
(1)起源(定义)不同:导数起源是函数值随自变量增量的变化率,即△y/△x的极限。微分起源于微量分析,如△y可分解成A△x与o(△x)两部分之和,其线性主部称微分。当△x很小时,△y的数值大小主要由微分A△x决定,而o(△x)对其大小的影响是很小的。
(2)几何意义不同:导数的值是该点处切线的斜率,微分的值是沿切线方向上纵坐标的增量,而△y则是沿曲线方向上纵坐标的增量。可参考任何一本教材的图形理解。
(3)联系:导数是微分之商(微商)y' =dy/dx, 微分dy=f'(x)dx,这里公式本身也体现了它们的区别。
(4)关系:对一元函数而言,可导必可微,可微必可导。