表观年龄预测工具dnaMethyAge

关键词:表观年龄, 表观时钟,甲基化时钟,甲基化年龄,epigenetic clocks, Horvath clock

该博文主要介绍我们开发的一个基于甲基化芯片数据预测各种表观年龄的R包: dnaMethyAge

1. 如何安装

最新的版本在Github,直接一条命令即可完成安装。

## 需要预先安装 'devetools'
# install.packages("devtools")
devtools::install_github("yiluyucheng/dnaMethyAge")

2. 支持多种常用clock

目前该R包支持以下常用clocks,该包将持续更新,关注新发表的年龄预测模型。

Name Published Name First Author (Published Year) Trained Phenotype Num. of CpGs Tissues Derived
HannumG2013 Gregory Hannum (2013) Chronological age 71 Whole blood
HorvathS2013 Multi-tissue age estimator Steve Horvath (2013) Chronological age 353 27 tissues/cells
YangZ2016 epiTOC Zhen Yang (2016) Mitotic divisions 385 Whole blood
ZhangY2017 Yan Zhang (2017) Mortality risk 10 Whole blood
HorvathS2018 Skin & Blood Clock Steve Horvath (2018) Chronological age 391 Skin, blood, buccal cells and 5 other tissues
LevineM2018 PhenoAge Morgan E. Levine (2018) Mortality risk 513 Whole blood
McEwenL2019 PedBE Lisa M. McEwen (2019) Chronological age 94 Buccal epithelial cells
ZhangQ2019 Qian Zhang (2019) Chronological age 514 Whole blood
LuA2019 DNAmTL Ake T. Lu (2019) Leukocyte telomere length 140 Whole blood
epiTOC2 epiTOC2 Andrew E. Teschendorff (2020) Mitotic divisions 163 Whole blood
ShirebyG2020 Cortical clock Gemma L Shireby (2020) Chronological age 347 Brain cortex
DunedinPACE DunedinPACE Daniel W Belsky (2022) Pace of ageing 173 Blood
PCGrimAge PCGrimAge Albert T. Higgins-Chen (2022) GrimAge estimated from DNAm data 78464 Blood
BernabeuE2023c cAge Elena Bernabeu (2023) Chronological age 3225 Blood

3. 如何使用

3.1 预测表观年龄

最重要的其实就是一条命令,用到‘methyAge’这个方法。
具体就是:

  • 打开R(Windows或Linux都行);
  • 载入dnaMethyAge包;
  • 载入你的甲基化数据,rownames是芯片探针名字, colnames是样本名字。(如果不确定格式,可以参考我们提供的一个示例数据集)
  • 定义你想用的表观年龄模型;
  • methyAge预测
library('dnaMethyAge')

## prepare betas dataframe
data('subGSE174422') ## load example betas

print(dim(betas)) ## probes in row and samples in column
# 485577 8

availableClock() ## List all supported clocks
# "HannumG2013"  "HorvathS2013" "LevineM2018"  "ZhangQ2019"   "ShirebyG2020"  "YangZ2016"    "ZhangY2017"

clock_name <- 'HorvathS2013'  # Select one of the supported clocks.
## Use Horvath's clock with adjusted-BMIQ normalisation (same as Horvath's paper)
horvath_age <- methyAge(betas, clock=clock_name)

print(horvath_age)
#                         Sample     mAge
# 1 GSM5310260_3999979009_R02C02 74.88139
# 2 GSM5310261_3999979017_R05C01 62.36400
# 3 GSM5310262_3999979018_R02C02 68.04759
# 4 GSM5310263_3999979022_R02C01 61.62691
# 5 GSM5310264_3999979027_R02C01 59.65161
# 6 GSM5310265_3999979028_R01C01 60.95991
# 7 GSM5310266_3999979029_R04C02 52.48954
# 8 GSM5310267_3999979031_R06C02 64.29711

3.1 预测表观年龄加速(age acceleration)

如果你不仅想预测表观年龄,还想计算age acceleration,我们也提供了一个好用的function。计算age acceleration需要提供每个样本的实际年龄,格式可以参考我们提供的info这个变量。

(2) Predict epigenetic age and calculate age acceleration

library('dnaMethyAge')

## prepare betas dataframe
data('subGSE174422') ## load example betas and info

print(dim(betas)) ## probes in row and samples in column
# 485577 8
print(info) ##  info should be a dataframe which includes at least two columns: Sample, Age.
#                         Sample  Age    Sex
# 1 GSM5310260_3999979009_R02C02 68.8 Female
# 2 GSM5310261_3999979017_R05C01 45.6 Female
# 3 GSM5310262_3999979018_R02C02 67.4 Female
# 4 GSM5310263_3999979022_R02C01 45.6 Female
# 5 GSM5310264_3999979027_R02C01 62.5 Female
# 6 GSM5310265_3999979028_R01C01 45.1 Female
# 7 GSM5310266_3999979029_R04C02 53.2 Female
# 8 GSM5310267_3999979031_R06C02 63.8 Female


clock_name <- 'HorvathS2013'  # Select one of the supported clocks, try: availableClock()
## Apply Horvath's clock and calculate age acceleration
## Use Horvath's clock with adjusted-BMIQ normalisation (same as Horvath's paper)

pdf('savename.pdf', width=4.3, height=6)
horvath_age <- methyAge(betas, clock=clock_name, age_info=info, fit_method='Linear', do_plot=TRUE)
dev.off()

print(horvath_age)
#                         Sample  Age    Sex     mAge Age_Acceleration
# 1 GSM5310260_3999979009_R02C02 68.8 Female 74.88139         7.334461
# 2 GSM5310261_3999979017_R05C01 45.6 Female 62.36400         3.318402
# 3 GSM5310262_3999979018_R02C02 67.4 Female 68.04759         1.013670
# 4 GSM5310263_3999979022_R02C01 45.6 Female 61.62691         2.581311
# 5 GSM5310264_3999979027_R02C01 62.5 Female 59.65161        -5.586763
# 6 GSM5310265_3999979028_R01C01 45.1 Female 60.95991         2.097534
# 7 GSM5310266_3999979029_R04C02 53.2 Female 52.48954        -9.340977
# 8 GSM5310267_3999979031_R06C02 63.8 Female 64.29711        -1.417638

这是我们上一步生成的图片savename.pdf。


subGSE174422

上面的分析我们用到了HorvathS2013这个引用最多的模型,使用其它模型只要改变代码里模型的名字就行。
下面的结果是我们用四种模型预测了 GSE147221这个数据集。

GSE147221的表观年龄预测

4. 引用我们

如果你在做研究时用到了我们的方法,欢迎引用我们:Wang et al., 2023

@article{Wang2023,
  title={Insights into ageing rates comparison across tissues from recalibrating cerebellum DNA methylation clock},
  author={Wang, Yucheng and Grant, Olivia A and Zhai, Xiaojun and McDonald-Maier, Klaus D and Schalkwyk, Leonard C},
  journal={GeroScience},
  pages={1--18},
  year={2023},
  publisher={Springer}
}

5. 联系我们

wangyucheng511爱 特gmail.com

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容