在Udacity学商业数据分析(模型建立)

以下内容是我在Udacity的商业数据分析纳米项目的学习总结,大部分内容是摘抄自课程文案。

第一部分——准备

在建立模型前,需要作出以下准备:

1.理解业务

• 需要做出哪些决策?

• 需要获得哪些信息,来做出这些决策?

• 什么类型的分析能够获取决策所需的信息?

2.理解数据

• 需要什么数据?

• 有什么数据可用?

• 数据的重要特征是什么?

3.准备数据

• 收集:收集数据时,可能需要从组织内的多个来源收集数据。

• 清理:使用的数据集可能有一些问题需要在分析之前解决。这可能包括数据不正确或丢失。

• 格式化:可能需要通过更改日期字段的显示方式,重命名字段,甚至旋转数据来格式化数据,类似于使用数据透视表。

• 混合:将数据与其他数据集进行混合或组合,以增加其他变量,类似于在 Excel 中使用 VLOOKUP 函数。

• 数据抽样:可能需要对数据集进行取样,并使用更易于管理的记录数。


第二部分——分析/建模

1.利用Methodology Map选择解决问题的框架

Methodology Map

2.根据框架创建模型

这里以线性回归方程为例,需要注意系数估计值(coefficient estimates)、p 值(p-values)和 R 平方。


第三部分——模型评估

• 观察模型上的关键结果

• 确保结果在业务问题的情境中有意义

• 确定是否继续下面的步骤还是返回上一阶段

• 必要时重复多次


第四部分——模型发布和可视化

• 根据分析,确定呈现见解的最佳方式

• 根据观众,确定呈现见解的最佳方式

• 确保共享的信息不要过量

• 使用结果向观众讲述故事

• 对于更复杂的分析,你可能需要向观众演示分析问题解决过程

• 始终注明使用的数据源出处

• 确保你的分析支持需要做出的决策

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容