【spark学习笔记】在idea搭建开发环境

1.序

我的工程是maven工程,通过maven不需要理会包的加载问题,很是方便。如果你还没有使用maven来管理工程的话那强烈建议你使用maven,尽管前期学习有点麻烦(主要是maven的默认下载镜像是国外)

2.搭建详情

下面是我建工程的截图

1.jpg
2.jpg
3.jpg
4.jpg
5.jpg
6.jpg
7.jpg
8.jpg
9.jpg
10.jpg
11.jpg

3.测试wordcount程序

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>cn.pwsoft</groupId>
    <artifactId>SparkStudy</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>3.8.1</version>
            <scope>test</scope>
        </dependency>

        <!-- https://mvnrepository.com/artifact/io.netty/netty-all -->
        <dependency>
            <groupId>io.netty</groupId>
            <artifactId>netty-all</artifactId>
            <version>4.1.4.Final</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-core_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-sql_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-hive_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>
        
        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>


        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-flume_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>

        <dependency>
            <groupId>org.apache.spark</groupId>
            <artifactId>spark-streaming-kafka_2.11</artifactId>
            <version>2.0.2</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-common -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>2.6.4</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.hadoop/hadoop-hdfs -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>2.6.4</version>
        </dependency>

    </dependencies>


</project>

wordcount程序源码



object MyWordCount {
  def main(args: Array[String]) {

    //获取SparkContext
    val spark = SparkSession
      .builder
      .appName("Spark Pi").master("local")
      .getOrCreate()

    var sc = spark.sparkContext

    //读取文件,返回这个文件的行数
    val count = sc.textFile("F:\\vmware\\share\\soft\\spark-1.6.0-bin-hadoop2.6\\README.md").count()
    println(count)

//    val lines = spark.sparkContext.textFile("F:\\vmware\\share\\soft\\spark-1.6.0-bin-hadoop2.6\\README.md")
//    val wordcount = lines.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_).collect()
//    wordcount.foreach(pair => println(pair._1 + "  :  " + pair._2))

    /**
      * flatMap产生 MapPartitionsRDD
      * map 产生 MapPartitionsRDD
      * reduceByKey 产生 ShuffledRDD
      * sortByKey 产生 ShuffledRDD
      */
    spark.sparkContext.textFile("F:\\vmware\\share\\soft\\spark-1.6.0-bin-hadoop2.6\\README.md").flatMap(line => line.split(" "))
      .map(word => (word, 1)).reduceByKey(_+_).map(pair => (pair._2, pair._1)).sortByKey(false).collect()
      .map(pair => (pair._2, pair._1)).foreach(pair => println(pair._1 + "  :  " + pair._2))

    //为了可以通过web控制台看到信息,加一个写循环不让程序结束
    while (true) {}
    
    
    spark.stop()

  }
}


成功运行
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容

  • Spring Cloud为开发人员提供了快速构建分布式系统中一些常见模式的工具(例如配置管理,服务发现,断路器,智...
    卡卡罗2017阅读 134,580评论 18 139
  • Spring Boot 参考指南 介绍 转载自:https://www.gitbook.com/book/qbgb...
    毛宇鹏阅读 46,717评论 6 342
  • 当前,JVM生态圈主要的三大构建工具: Apache Ant(带着Ivy) Maven Gradle 对于刚开始接...
    清枫_小天阅读 5,772评论 1 13
  • 概要 目前Spark官方提供Java,Scala,Python三种语言的API。因为Spark是用Scala开发,...
    migle阅读 5,406评论 6 13
  • 快要毕业了。 想找一个地方,记录下从学校到社会这一段旅程的心情,也记录下工作中的点滴感悟。 感觉这里不错!试一下~
    yyxz阅读 122评论 0 0