散列表(上):单词拼写检查功能如何实现

1. 散列思想

散列表利用的就是数组支持按照下标随机访问的时候,时间复杂度是 O(1) 的特性。通过散列函数把元素的键值映射为下标,然后将数据存储在数组中对应下标的位置。当我们按照键值查询元素时,用同样的散列函数,将键值转化数组下标,从对应的数组下标的位置取数据。

散列

2. 散列函数

散列函数定义为 hash(key),其中 key 表示元素的键值,hash(key) 的值表示经过散列函数计算得到的散列值。

该如何构造散列函数?有三点基本要求:

  • 散列函数计算得到的散列值是一个非负整数;
  • 如果 key1 = key2,那 hash(key1) == hash(key2);
  • 如果 key1 ≠ key2,那 hash(key1) ≠ hash(key2)。

第一、二点很好理解,第三点实际上几乎不可能,因为它无法避免散列冲突。

3. 散列冲突

解决方法:开放寻址法和链表法。

开放寻址法

核心思想是,如果出现了散列冲突,就重新探测一个空闲位置,将其插入。探测方法有线形探测、二次探测和双重散列。

开放寻址法

线性探测

  • 插入数据:当我们往散列表中插入数据时,如果某个数据经过散列函数之后,存储的位置已经被占用了,就从当前位置开始,依次往后查找,看是否有空闲位置,直到找到为止。
  • 查找数据:通过散列函数求出要查找元素的键值对应的散列值,然后比较数组中下标为散列值的元素和要查找的元素是否相等。如果相等,则说明就是要找的元素;否则,就顺序往后依次查找。如果遍历到数组的空闲位置还未找到,就说明要查找的元素并没有在散列表中。
  • 删除数据:为了不让查找算法失效,可以将删除的元素特殊标记为 deleted,当线性探测查找的时候,遇到标记为 deleted 的空间,并不是停下来,而是继续往下探测。

结论:最坏的时间复杂度为O(n)

二次探测

线性探测每次探测的步长为1,即在数组中一个个探测,而二次探测的步长变为原来的平方。

双重散列

使用一组散列函数,直到找到空闲位置为止。

散列表用装载因子(load factor)来表示空位的多少,计算公式是:

散列表的装载因子 = 填入表中的元素个数 / 散列表的长度

装载因子越大,说明空闲位置越少,冲突越多,散列表的性能会下降。

链表法

更加常用,比开放寻址法简单。

在散列表中,每个“桶(bucket)”或者“槽(slot)”会对应一条链表,所有散列值相同的元素我们都放到相同槽位对应的链表中。

链表法
  • 插入数据:当插入的时候,通过散列函数计算出对应的散列槽位,将其插入到对应的链表中即可,所以时间复杂度为 O(1)。
  • 查找或删除数据:当查找、删除一个元素时,通过散列函数计算对应的槽,然后遍历链表查找或删除。对于散列比较均匀的散列函数,链表的节点个数 k=n/m,其中 n 表示散列表中数据的个数,m 表示散列表中槽的个数,所以时间复杂度为 O(k)。

课后思考

  1. Word 文档中单词拼写检查功能是如何实现的?
  2. 假设我们有 10 万条 URL 访问日志,如何按照访问次数给 URL 排序?
  3. 有两个字符串数组,每个数组大约有 10 万条字符串,如何快速找出两个数组中相同的字符串?
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,468评论 5 473
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,620评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,427评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,160评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,197评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,334评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,775评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,444评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,628评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,459评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,508评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,210评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,767评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,850评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,076评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,627评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,196评论 2 341

推荐阅读更多精彩内容