对称加密与非对称加密

对称加密

1976年之前网络传输都是使用对称加密。(优点:效率高 缺点:不安全)

原理:

我生成了一个密钥,并且加密了信息发给你,你用我生成的这个密钥去解密信息。双方使用的都是同一个密钥。

存在的问题:

我必须将密钥发给你,你才能解开我加密的信息。密钥在网络上是明文传播,很容易被截取。不安全。

解决方法:

1976年后两位美国计算机学家Whitfield Diffie 和 Martin Hellman,提出了一种崭新构思,可以在不直接传递密钥的情况下,完成解密。即--------非对称加密。

非对称加密

我生成一对密钥(A和B)A为公钥 B为私钥 (两个密钥不同)
你生成一对密钥(X和Y)X为公钥 Y为私钥 (两个密钥不同)

传输过程:

我在你这里下载你的公钥X,并用你的公钥加密信息,再传输给你。你用你的私钥Y解密信息。
接着,你在我这里下载我的公钥A,将接受信息成功的消息,用我的公钥A加密,并传输给我。我用我的私钥B,解密信息。并知道了我的信息成功发给了你。

请看下面例子:

首先,每个用户都有两把钥匙,一把公钥一把私钥。公钥是对外发布的,所有人都看的到所有人的公钥,私钥是自己保存,每个人都只知道自己的私钥而不知道别人的。用该用户的公钥加密后只能该用户的私钥才能解密。这种情况下,公钥是用来加密信息的,确保只有特定的人(用谁的公钥就是谁)才能解密该信息。下面我拿A银行和小明来举例子吧。假设这2者之间是用不对称的加密算法来保证信息传输的安全性(不被第三人知道信息的含义及篡改信息)。

大致流程如下:首先小明发了一条信息给A银行“我要存500元”。这条信息小明会根据A银行的对外发布的公钥把这条信息加密了,加密之后,变成“XXXXXXX”发给A银行。中间被第三者截获,由于没有A银行的私钥无法解密,不能知道信息的含义,也无法按正确的方式篡改。所以拿这条加密信息是没办法的。最后被A银行接受,A银行用自己的私钥去解密这条信息,解密成功,读取内容,执行操作。然后得知消息是小明发来的,便去拿小明的公钥,把“操作成功(或失败)”这条信息用小明的公钥加密,发给小明。同理最后小明用自己的私钥解开,得知知乎发来的信息内容。其他人截获因为没有小明的私钥所以也没有用。
还有第二种情况,公钥是用来解密信息的,确保让别人知道这条信息是真的由我发布的,是完整正确的。接收者由此可知这条信息确实来自于拥有私钥的某人,这被称作数字签名,公钥的形式就是数字证书。怎么理解呢?继续拿小明和银行A举例子。银行A发布了一个银行客户端的补丁供所有用户更新,那为了确保人家下载的是正确完整的客户端,银行A会为这个程序打上一个数字签名(就是用银行A的私钥对这个程序加密然后发布),你需要在你的电脑里装上银行A的数字证书(就是银行对外发布的公钥),然后下载好这个程序,数字证书会去解密这个程序的数字签名,解密成功,补丁得以使用。同时你能知道这个补丁确实是来自这个银行A,是由他发布的,而不是其他人发布的。

作者:郑一轩
链接:https://www.zhihu.com/question/33645891/answer/57512229
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

注意:公钥加密的信息只能由私钥才能解密。

具体算法

参考RSA算法原理(一)http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html
参考RSA算法原理(二)
http://www.ruanyifeng.com/blog/2013/07/rsa_algorithm_part_two.html
RSA算法核心是欧拉定理/欧拉函数

存在的问题:

如果信息都用非对称加密传输,效率非常低。

解决方法:

将对称加密的密钥,通过非对称加密进行传输,最后用对称加密进行信息传输。
请看下面的例子:
(1) Alice需要在银行的网站做一笔交易,她的浏览器首先生成了一个随机数作为对称密钥。
(2) Alice的浏览器向银行的网站请求公钥。
(3) 银行将公钥发送给Alice。
(4) Alice的浏览器使用银行的公钥将自己的对称密钥加密。
(5) Alice的浏览器将加密后的对称密钥发送给银行。
(6) 银行使用私钥解密得到Alice浏览器的对称密钥。
(7) Alice与银行可以使用对称密钥来对沟通的内容进行加密与解密了。

总结

(1) 对称加密加密与解密使用的是同样的密钥,所以速度快,但由于需要将密钥在网络传输,所以安全性不高。
(2) 非对称加密使用了一对密钥,公钥与私钥,所以安全性高,但加密与解密速度慢。
(3) 解决的办法是将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容