PyTorch入门学习(二):Autogard之自动求梯度

未经允许,不得转载,谢谢~~

autograd包是PyTorch中神经网络的核心部分,简单学习一下.

autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次的迭代都可以是不一样的.

Variable类

  • autograd.Variable是这个包中的核心类.
  • 它封装了Tensor,并且支持了几乎所有Tensor的操作.
  • 一旦你完成张量计算之后就可以调用.backward()函数,它会帮你把所有的梯度计算好.
  • 通过Variable的.data属性可以获取到张量.
  • 通过Variabe的.grad属性可以获取到梯度.

下图是Variable的结构图:


Function类

  • 对于实现自动求梯度还有一个很重要的类就是autograd.Function.
  • VariableFunction一起构建了非循环图,完成了前向传播的计算.
  • 每个通过Function函数计算得到的变量都有一个.grad_fn属性.
  • 用户自己定义的变量(不是通过函数计算得到的)的.grad_fn值为空.
  • 如果想计算某个变量的梯度,可以调用.backward()函数:
    1.当变量是标量的时候不需要指定任何参数.
    2.当变量不是标量的时候,需要指定一个跟该变量同样大小的张量grad_output用来存放计算好的梯度.

代码示例

  • import packet
import torch
from torch.autograd import Variable
  • Create a variable
x=Variable(torch.ones(2,2),requires_grad=True)
print (x)
  • Do an operation of variable
y=x+2
print(y)
  • grad_fn attribute
    这里的x是属于用户自己定义的,而y属于函数产生的,所以y有grad_fn属性,而x没有.
print (x.grad_fn)
print (y.grad_fn)
  • more operations on y
z = y * y * 3
out = z.mean()
print(z, out)

Gradients

如果你跟着上面的代码做下来的话,上面已经完成了变量x及计算函数的定义.
现在我们就可以用backward()自动求导啦.

out.backward()
print(x.grad)

反向计算得到的梯度如下所示:


  • 这里的out为标量,所以直接调用backward()函数即可.
  • 一定要注意当out为数组时,用先定义一样大小的Tensor例如grad_output执行.backgrad(grad_output)语句.

以上就基本完成了前向传播建立计算图以及反向传播求梯度的过程.

more

关于 Variable and Function 更详细的参考资料:
http://pytorch.org/docs/autograd

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容