「JCVI教程」如何绘制CNS级别的共线性图(上)

本教程借鉴https://github.com/tanghaibao/jcvi/wiki/MCscan-(Python-version).

我们先从http://plants.ensembl.org/index.html选择两个物种做分析, 这里选择的就是前两个物种,也就是拟南芥和水稻(得亏没有小麦和玉米)

选择物种

我们下载它的GFF文件,cdna序列和蛋白序列

#Athaliana
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/arabidopsis_thaliana/cdna/Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/arabidopsis_thaliana/pep/Arabidopsis_thaliana.TAIR10.pep.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/gff3/arabidopsis_thaliana/Arabidopsis_thaliana.TAIR10.44.gff3.gz
#Osativa
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/oryza_sativa/cdna/Oryza_sativa.IRGSP-1.0.cdna.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/fasta/oryza_sativa/pep/Oryza_sativa.IRGSP-1.0.pep.all.fa.gz
wget ftp://ftp.ensemblgenomes.org/pub/plants/release-44/gff3/oryza_sativa/Oryza_sativa.IRGSP-1.0.44.gff3.gz

保证要有6个文件以便下游分析

$ ls
Arabidopsis_thaliana.TAIR10.44.gff3.gz      Arabidopsis_thaliana.TAIR10.pep.all.fa.gz  Oryza_sativa.IRGSP-1.0.cdna.all.fa.gz
Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz  Oryza_sativa.IRGSP-1.0.44.gff3.gz          Oryza_sativa.IRGSP-1.0.pep.all.fa.gz

我们分析只需要用到每个基因最长的转录本就行,之前我用的是自己写的脚本,但其实我发现jcvi其实可以做到这件事情

先将gff转成bed格式,

python -m jcvi.formats.gff bed --type=mRNA --key=transcript_id Arabidopsis_thaliana.TAIR10.44.gff3.gz > ath.bed
python -m jcvi.formats.gff bed --type=mRNA --key=transcript_id Oryza_sativa.IRGSP-1.0.44.gff3.gz > osa.bed

然后将bed进行去重复

python -m jcvi.formats.bed uniq ath.bed
python -m jcvi.formats.bed uniq osa.bed

最后我们得到了ath.uniq.bedosa.uniq.bed, 根据bed文件第4列就可以用于提取cds序列和蛋白序列。

# Athaliana
seqkit grep -f <(cut -f 4 ath.uniq.bed ) Arabidopsis_thaliana.TAIR10.cdna.all.fa.gz | seqkit seq -i > ath.cds
seqkit grep -f <(cut -f 4 ath.uniq.bed ) Arabidopsis_thaliana.TAIR10.pep.all.fa.gz | seqkit seq -i > ath.pep 
# Osativa
seqkit grep -f <(cut -f 4 osa.uniq.bed )  Oryza_sativa.IRGSP-1.0.cdna.all.fa.gz | seqkit seq -i  > osa.cds
seqkit grep -f <(cut -f 4 osa.uniq.bed ) Oryza_sativa.IRGSP-1.0.pep.all.fa.gz | seqkit seq -i  > osa.pep

这里用到的seqkit建议学习,非常好用

下面使用python -m jcvi.compara.catalog ortholog进行共线性分析,这是一个非常行云流水的过程(除非你报错)

新建一个文件夹,方便在报错的时候,把全部都给删了,

mkdir -p cds && cd cds
ln -s ../ath.cds ath.cds
ln -s ../ath.uniq.bed ath.bed
ln -s ../osa.cds osa.cds
ln -s ../osa.uniq.bed osa.bed

运行代码

python -m jcvi.compara.catalog ortholog --no_strip_names ath osa

输出结果如下

$ ls ath.osa.*
ath.osa.anchors  ath.osa.last  ath.osa.last.filtered  ath.osa.lifted.anchors  ath.osa.pdf

其中我们最感兴趣都是pdf结果,不出意外没啥共线性。

共线性结果

我们还可以用蛋白序列做共线性分析

# 在之前输出cds,pep都文件夹操作
mkdir -p pep && cd pep
ln -s ../ath.pep ath.pep
ln -s ../ath.uniq.bed ath.bed
ln -s ../osa.pep osa.pep
ln -s ../osa.uniq.bed osa.bed

运行代码

python -m jcvi.compara.catalog ortholog --dbtype prot --no_strip_names ath osa

我之前以为他不可以基于蛋白序列分析,幸亏有人提醒。

蛋白共线性

你会发现这是一个自动化分析流程,我们只是提供了4个文件,它就完成了一些列事情。它生成的文件里除了PDF外,其他还有啥用呢?

  • ath.osa.last: 基于LAST的比对结果
  • ath.osa.last.filtered: LAST的比对结果过滤串联重复和低分比对
  • ath.osa.anchors: 高质量的共线性区块
  • ath.osa.lifted.anchors:增加了额外的锚点,形成最终的共线性区块

anchors文件特别有用,之后会写一篇介绍如何利用他进行可视化,这里介绍它的格式。

###
AT1G28395.5     Os01t0238800-02 66
AT1G28440.1     Os01t0239700-02 1360
AT1G28480.1     Os01t0241400-01 136
AT1G28510.1     Os01t0242300-01 241
###
AT1G11100.3     Os01t0779400-01 943
AT1G11125.1     Os01t0779800-01 52
AT1G11160.2     Os01t0780400-02 535
AT1G11180.1     Os01t0780500-01 483
AT1G11330.2     Os01t0784700-00 742
AT1G11360.1     Os01t0783500-01 305
AT1G11540.2     Os01t0786800-01 422
AT1G11570.3     Os01t0788200-01 162
AT1G11580.2     Os01t0788400-01 550
AT1G11630.1     Os01t0793200-01 321

每个共线性区块以###进行分隔, 第一列是检索的基因,第二列是被检索的基因,第三列则是两个序列的BLAST的bit score,值越大可靠性越高。


用水稻和拟南芥进行了比较之后,发现后面基本上也没啥可以分析了。因此下面基于「JCVI教程」如何基于物种的CDS的blast结果绘制点图(dotplot)得到的cds和bed文件进行分析。

之前已经得到了如下四个文件

ls ???.???
aly.bed  aly.cds  ath.bed  ath.cds

所以我们只要运行

python -m jcvi.compara.catalog ortholog --no_strip_names aly ath

就得到了一个非常好看的点图

点图

我们可以发现,都作为Arabidopsis属的两个物种,他们之间存在很高的同源性,并且同源区比例是1:1,

共线区域比例

这其实和2011年的Nature Genetics上Alyrata的文章的结果是相似的,只不过他不是用点图进行展示

Nature Genetics

我们也可以用JCVI的画图模块实现这种效果,只不过还需要一点额外操作,创建如下三个文件

  • seqids: 需要展现哪些序列
  • layout: 不同物种的在图上的位置
  • .simple: 从.anchors文件创建的更简化格式

第一步,创建.simple文件

python -m jcvi.compara.synteny screen --minspan=30 --simple aly.ath.anchors aly.ath.anchors.new 

第二步, 创建seqid文件,非常简单,就是需要展示的scaffold或染色体的编号

scaffold_1,scaffold_2,scaffold_3,scaffold_4,scaffold_5,scaffold_6,scaffold_7,scaffold_8
Chr1,Chr2,Chr3,Chr4,Chr5

第二步,创建layout文件,用于设置绘制的一些选项。

# y, xstart, xend, rotation, color, label, va,  bed
 .6,     .2,    .8,       0,      , Alyrata, top, aly.bed
 .4,     .2,    .8,       0,      , Athaliana, top, ath.bed
# edges
e, 0, 1, aly.ath.anchors.simple

注意, #edges下的每一行开头都不能有空格

最后运行下面的命令,会得到一个karyotype.pdf

python -m jcvi.graphics.karyotype seqids layout
染色体共线性图

如何让这个图垂直呢?(导入AI里就好了)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342