Optimization Algorithms

机器学习应用是一个高度依赖经验并伴随着大量迭代的过程——这一句话不得不同意,经验更重要,深有体会。你需要训练诸多模型才能找到合适的那一个。深度学习没有在大数据领域发挥最大的效果,我们可以利用一个巨大的数据集来训练神经网络,而在巨大的数据集基础上训练速度很慢,因此你会发现使用快速的优化算法、使用好用的优化算法能大大提高你和团队的效率

Mini batch & gradient descent

向量化能让你有效对所有m个例子进行计算,允许你处理整个训练集而无需某个明确的公式,把训练集放到一个巨大矩阵X当中去,当m很大的时候,500万甚至5000万的时候,在对整个训练集执行梯度下降法时,必须处理整个训练集,然后才能进行一步梯度下降,然后你需要再重新处理500万个样本,才能进行下一步梯度下降法 。处理速度就会很慢。所以,你在处理完500万个样本训练之前。先让梯度下降法处理处理一部分,你的算法速度会更快。
把训练集分割为小一点的子集训练,这些子集被取名为Mini-batch,假设每个子集中只有1000个样本,那么把其中的x(1)到x(1000)取出来,称为第一个子训练集,然后再取接下来的1000个。



使用mini-batch梯度下降法,如果你作出成本函数在整个过程中的图,则并不是每次迭代都是下降的,走向朝下,但有更多的噪声,没有每次都下降不要紧,但是走势应该是向下的 。噪声产生的原因在于:也许 X{1}, Y{1} 是比较容易计算的mini-batch,因此cost会低一些,不过也许处于偶然。X{2} , Y{2}是比较难运算的mini-batch,cost会高一些,所以才会出现这些摆动。

你需要决定的变量之一是mini-batch的大小,m就是训练集的大小,极端情况下,如果mini-batch的大小等于m,其实就是batch梯度下降法,在这种极端情况下,你就有了mini-batch X{1} , Y{1},并且该mini-batch等于整个训练集,所以把mini-batch大小设为m可以得到batch梯度下降法。 另一个极端情况,假设mini-batch大小为1,就有了新的算法,叫做随机梯度下降法,每个样本都是独立的mini-batch,当你看第一个mini-batch,也就是X{1}和Y{1},如果mini-batch大小为1,它就是你的第一个训练样本。接着再看第二个mini-batch,也就是第二个训练样本,采取梯度下降步骤,然后是第三个训练样本,以此类推,一次只处理一个。 看在两种极端下成本函数的优化情况,如果这是你想要最小化的成本函数的轮廓,最小值在那里,batch梯度下降法从某处开始,相对噪声低些,幅度也大一些,你可以继续找最小值。

相反,在随机梯度下降法中,从某一点开始,我们重新选取一个起始点,每次迭代,你只对一个样本进行梯度下降,大部分时候你向着全局最小值靠近,有时候你会远离最小值,因为那个样本恰好给你指的方向不 对,因此随机梯度下降法是有很多噪声的,平均来看,它最终会靠近最小值,不过有时候也会方向错误,因为随机梯度下降法永远不会收敛,而是会一 直在最小值附近波动,但它并不会在达到最小值并停留在此。

实际上你选择的mini-batch大小在二者之间,大小在1和m之间。
相反,如果使用随机梯度下降法,如果你只要处理一个样本,那这个方法很好,这样做没有问题,通过减小学习率,噪声会被改善或有所减小,但随机梯度下降法的一大缺点是,会失去所有向量化带给你的加速,因为一次性只处理了一个训练样本,这样效率过于低下,所以实践中最好选择不大不小的mini-batch尺寸,实际上学习率达到最快。你会发现两个好处,一方面,你得到了大量向量化,如果mini-batch大小为1000个样本,你就可以对1000个样本向量化,比你一次性处理多个样本快得多。另一方面,你不需要等待整个训练集被处理完就可以开始进行后续工作,每次训练集允许我们采取5000个梯度下降步骤,所以实际上一些位于中间的mini-batch大小效果最好。

怎么选取mini-batch的大小,实际是有指导原则

  • 训练集比较小
    直接使用batch梯度下降法,样本集较小就没必要使用mini-batch梯度下降法,你可以快速处理整个训练集,所以使用batch梯度下降法也很好,这里的少是说小于2000个样本。
  • 样本比较大
    一般的mini-batch大小为64到512,考虑到电脑内存设置和使用的方式,如果mini-batch大小是2n次方,代码会运行地快一些,64就是2的6次方,以此类推,128是2的7次方,256是2的8次方,512是2的9次方。所以我经常把mini-batch大小设成2的次方。

Exponentially weighted averages(指数加权平均 )

Gradient descent with momentum(动量梯度下降法 )

RMSprop

Adam

Learning rate decay

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 200,961评论 5 473
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,444评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,009评论 0 333
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,082评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,101评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,271评论 1 278
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,738评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,395评论 0 255
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,539评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,434评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,481评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,160评论 3 317
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,749评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,816评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,038评论 1 256
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,548评论 2 346
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,140评论 2 341

推荐阅读更多精彩内容