单纯贝叶斯分类法

  1. import the data
data(Titanic)
tr(Titanic)
# 'table' num [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
# - attr(*, "dimnames")=List of 4
# ..$ Class   : chr [1:4] "1st" "2nd" "3rd" "Crew"
# ..$ Sex     : chr [1:2] "Male" "Female"
# ..$ Age     : chr [1:2] "Child" "Adult"
# ..$ Survived: chr [1:2] "No" "Yes"
  1. convert the array into a data frame
countsToCases <- function(x, countcol = "Freq") {
  # Get the row indices to pull from x
  idx <- rep.int(seq_len(nrow(x)), x[[countcol]])
  # Drop count column
  x[[countcol]] <- NULL
  # Get the rows from x
  x[idx, ]
}

caseTita<-countsToCases(as.data.frame(Titanic))
head(caseTita)
# Class  Sex   Age Survived
# 3     3rd Male Child       No
# 3.1   3rd Male Child       No
# 3.2   3rd Male Child       No
# 3.3   3rd Male Child       No
# 3.4   3rd Male Child       No
# 3.5   3rd Male Child       No

nrow(caseTita)
# [1] 2201
  1. Naïve Bayes classification
library(e1071)
model <- naiveBayes(Survived ~ ., data = caseTita)
predict(model, caseTita[sample(1:2201,10,replace=FALSE),])
# [1] No  No  No  No  No  No  Yes No  Yes No 
# Levels: No Yes
predict(model, caseTita[sample(1:2201,10,replace=FALSE),],type="raw")
# No       Yes
# [1,] 0.7247820 0.2752180
# [2,] 0.6960593 0.3039407
# [3,] 0.8466171 0.1533829
# [4,] 0.3679509 0.6320491
# [5,] 0.8466171 0.1533829
# [6,] 0.7247820 0.2752180
# [7,] 0.8466171 0.1533829
# [8,] 0.3523184 0.6476816
# [9,] 0.8552217 0.1447783
# [10,] 0.8466171 0.1533829

m <- naiveBayes(Survived ~ ., data = Titanic)
m

# Naive Bayes Classifier for Discrete Predictors
# 
# Call:
#   naiveBayes.formula(formula = Survived ~ ., data = Titanic)
# 
# A-priori probabilities:
#   Survived
# No      Yes 
# 0.676965 0.323035 
# 
# Conditional probabilities:
#   Class
# Survived        1st        2nd        3rd       Crew
# No  0.08187919 0.11208054 0.35436242 0.45167785
# Yes 0.28551336 0.16596343 0.25035162 0.29817159
# 
# Sex
# Survived       Male     Female
# No  0.91543624 0.08456376
# Yes 0.51617440 0.48382560
# 
# Age
# Survived      Child      Adult
# No  0.03489933 0.96510067
# Yes 0.08016878 0.91983122
  1. split the data into the predictor data frame and outcome vector
library(caret)
x<-caseTita[,-4]
y<-caseTita$Survived

model1 <- train(x,y,'nb',trControl=trainControl(method='cv',number=10))
model1
# Naive Bayes 
# 
# 2201 samples
# 3 predictor
# 2 classes: 'No', 'Yes' 
# 
# No pre-processing
# Resampling: Cross-Validated (10 fold) 
# Summary of sample sizes: 1981, 1981, 1981, 1981, 1981, 1981, ... 
# Resampling results across tuning parameters:
#   
#   usekernel  Accuracy   Kappa    
# FALSE      0.7791814  0.4474594
# TRUE      0.7791814  0.4474594
# 
# Tuning parameter 'fL' was held constant at a value of 0
# Tuning parameter 'adjust' was held
# constant at a value of 1
# Accuracy was used to select the optimal model using the largest value.
# The final values used for the model were fL = 0, usekernel = FALSE and adjust = 1.
  1. predict the outcome
predict(model1$finalModel,caseTita[sample(1:2201,10,replace=FALSE),])$class
# 27.63 12.225  30.44 12.630  11.24  15.38   9.76  31.15 10.150  10.53 
# No     No    Yes     No     No    Yes     No    Yes     No     No 
# Levels: No Yes
table(predict(model1$finalModel,x)$class,y)
#        y
#      No  Yes
# No  1364  362
# Yes  126  349

Reference:
Zhang Zhongheng Naïve Bayes classification in R

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容

  • 前言 此程序基于新闻文本分类实验 使用朴素贝叶斯(Naive Bayes Classifier)模型实现分类任务。...
    奋斗青春无悔阅读 733评论 0 1
  • 我是黑夜里大雨纷飞的人啊 1 “又到一年六月,有人笑有人哭,有人欢乐有人忧愁,有人惊喜有人失落,有的觉得收获满满有...
    陌忘宇阅读 8,520评论 28 53
  • 信任包括信任自己和信任他人 很多时候,很多事情,失败、遗憾、错过,源于不自信,不信任他人 觉得自己做不成,别人做不...
    吴氵晃阅读 6,178评论 4 8
  • 怎么对待生活,它也会怎么对你 人都是哭着来到这个美丽的人间。每个人从来到尘寰到升入天堂,整个生命的历程都是一本书,...
    静静在等你阅读 4,956评论 1 6