【面试被虐】游戏中的敏感词过滤是如何实现的?

小秋今天去面试了,面试官问了一个与敏感词过滤算法相关的问题,然而小秋对敏感词过滤算法一点也没听说过。于是,有了以下事情的发生…..

面试官开怼

面试官:玩过王者荣耀吧?了解过敏感词过滤吗?,例如在游戏里,如果我们发送“你在干嘛?麻痹演员啊你?”,由于“麻痹”是一个敏感词,所以当你把聊天发出来之后,我们会用“”来代表“麻痹”这次词,所以发送出来的聊天会变成这样:“你在干嘛?演员啊你?”。

小秋:听说过啊,在各大社区也经常看到,例如评论一个问题等,一些粗话经常被过滤掉了。

面试官:嗯,如果我给你一段文字,以及给你一些需要过滤的敏感词,你会怎么来实现这个敏感词过滤的算法呢?例如我给你一段字符串“abcdefghi",以及三个敏感词"de", "bca", "bcf"。

小秋:(敏感词过来算法??不就是字符串匹配吗?)我可以通过字符串匹配算法,例如在字符串”abcdefghi"在查找是否存在字串“de",如果找到了就把”de“用""代替。通过三次匹配之后,接变成这样了:“abcfghi"。

面试官:可以说说你采用哪种字符串匹配算法吗?

小秋:最简单的方法就是采用两个for循环保留求解了,不过每次匹配的都时间复杂度为O(n*m),我可以采用 KMP 字符串匹配算法,这样时间复杂度是 O(m+n)。

n 表示字符串的长度,m 表示每个敏感词的长度。

面试官:这是一个方法,对于敏感词过滤,你还有其他方法吗?

小秋:(其他方法?说实话,我也觉得不是采用这种 KMP 算法来匹配的了,可是,之前也没去了解过敏感词,这下要凉)对敏感词过来之前也没了解过,暂时没想到其他方法。

trie 树

面试官:了解过 trie 树吗?

小秋:(嘿嘿,数据结构这方法,我得争气点)了解过,我还用代码实现过。

面试官:可以说说它的特点吗?

小秋:trie 树也称为字典树、单词查找树,最大的特点就是共享字符串的公共前缀来达到节省空间的目的了。例如,字符串 "abc"和"abd"构成的 trie 树如下:

trie 树的根节点不存任何数据,每整个个分支代表一个完整的字符串。像 abc 和 abd 有公共前缀 ab,所以我们可以共享节点 ab。如果再插入 abf,则变成这样:

如果我再插入 bc,则是这样(bc 和其他三个字符串没有公共前缀)

面试官:那如果再插入 "ab" 这个字符串呢?

小秋:差点说了,每个分支的内部可能也含有完整的字符串,所以我们可以对于那些是某个字符串结尾的节点做一个标记,例如 abc, abd,abf 都包含了字符串 ab,所以我们可以在节点 b 这里做一个标记。如下(我用红色作为标记):

面试官:可以说说 trie 树有哪些应用吗?

小秋:trie 最大的特点就是利用了字符串的公共前缀,像我们有时候在百度、谷歌输入某个关键字的时候,它会给我们列举出很多相关的信息

这种就是通过 trie 树来实现的。

小秋:(嗯? trie 又称为单词查找树,好像可以用 trie 来实现刚才的敏感词匹配?面试官无缘无故提 trie 树难道别有用意?)

面试官:刚才的敏感词过滤,其实也可以采用 trie 来实现,你知道怎么实现吗?

trie 树来实现敏感词过滤

小秋:(果然,面试官真是个好人啊,直接提示了,要是还不知道怎么实现,那不真凉?)我想想……..我知道了,我可以这样来实现:

先把你给我的三个敏感词:"de", "bca", "bcf" 建立一颗 trie 树,如下:

接着我们可以采用三个指针来遍历,我直接用上面你给你例子来演示吧。

1、首先指针 p1 指向 root,指针 p2 和 p3 指向字符串第一个字符

2、然后从字符串的 a 开始,检测有没有以 a 作为前缀的敏感词,直接判断 p1 的孩子节点中是否有 a 这个节点就可以了,显然这里没有。接着把指针 p2 和 p3 向右移动一格。

3、然后从字符串 b 开始查找,看看是否有以 b 作为前缀的字符串,p1 的孩子节点中有 b,这时,我们把 p1 指向节点 b,p2 向右移动一格,不过,p3不动。

4、判断 p1 的孩子节点中是否存在 p2 指向的字符c,显然有。我们把 p1 指向节点 c,p2 向右移动一格,p3不动。

5、判断 p1 的孩子节点中是否存在 p2 指向的字符d,这里没有。这意味着,不存在以字符b作为前缀的敏感词。这时我们把p2和p3都移向字符c,p1 还是还原到最开始指向 root。

6、和前面的步骤一样,判断有没以 c 作为前缀的字符串,显然这里没有,所以把 p2 和 p3 移到字符 d。

7、然后从字符串 d 开始查找,看看是否有以 d 作为前缀的字符串,p1 的孩子节点中有 d,这时,我们把 p1 指向节点 b,p2 向右移动一格,不过,p3和刚才一样不动。(看到这里,我猜你已经懂了)

8、判断 p1 的孩子节点中是否存在 p2 指向的字符e,显然有。我们把 p1 指向节点 e,并且,这里e是最后一个节点了,查找结束,所以存在敏感词de,即 p3 和 p2 这个区间指向的就是敏感词了,把 p2 和 p3 指向的区间那些字符替换成 *。并且把 p2 和 p3 移向字符 f。如下:

9、接着还是重复同样的步骤,知道 p3 指向最后一个字符。

复杂度分析

面试官:可以说说时间复杂度吗?

小秋:如果敏感词的长度为 m,则每个敏感词的查找时间复杂度是 O(m),字符串的长度为 n,我们需要遍历 n 遍,所以敏感词查找这个过程的时间复杂度是 O(n * m)。如果有 t 个敏感词的话,构建 trie 树的时间复杂度是 O(t * m)。

这里我说明一下,在实际的应用中,构建 trie 树的时间复杂度我觉得可以忽略,因为 trie 树我们可以在一开始就构建了,以后可以无数次重复利用的了。

10、如果让你来 构建 trie 树,你会用什么数据结构来实现?

小秋:我一般使用 Java,我会采用 HashMap 来实现,因为一个节点的字节点个数未知,采用 HashMap 可以动态拓展,而且可以在 O(1) 复杂度内判断某个子节点是否存在。

面试官:嗯,回去等通知吧。

总结

今天主要将了 trie 树以及 trie 树的一些应用,还要就是如何通过 trie 树来实现敏感词的过滤,至于代码的实现,我这里就不给出了,在实现的时候,为了防止这种”麻 痹"或者“麻¥痹”等,我们也要对特殊字符进行过滤等,有兴趣的可以去实现一波。

END

彩蛋福利

免费获取Java学习笔记,面试,文档以及视频

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容