RFCN 精简讲解

一、前言

之前的Faster RCNN对Fast RCNN产生region porposal的问题给出了解决方案,并且在RPN和Fast RCNN网络中实现了卷积层共享。

但是这种共享仅仅停留在第一卷积部分,RoIpooling及之后的部分没有实现完全共享,可以当做是一种“部分共享”,这导致两个损失:1.信息损失,精度下降。2.由于后续网络部分不共享,导致重复计算全连接层等参数,时间代价过高。(另外还需要多说一句,全连接层计算量是要大于全卷积层的)

因此RFCN(Region-based fully convolutional network)试图以Faster RCNN和FCN为基础进行改进。

二、结构

2.1问题

第一个问题,如何改进不完全共享问题

FCN(Fully convolutional network)针对不完全共享问题进行了改进,即:将一般的backbone网络中用于分类的全连接层替换为全卷积层,这样一来整个网络结构均是由卷积层构成,因而称为全卷积网络。

第二个问题,目标检测的需求

很显然,目标检测问题包括两个子问题:第一是确定物体种类,第二是确定物体位置,确定物体种类时我们希望保持位置不敏感性(translation invariance也就是说不管物体出现在哪个位置都能正确分类)以及保持位置敏感性(translation variance我们当然希望不论物体发生怎样的位置变化都能确定物体位置)

这两个需求看起来比较矛盾,RFCN做出了一个折中,实际上也不算折中吧,就是这样一个问题:我们知道全卷积网络提取特征非常强,因此用于物体分类很nice,但是普通的卷积网络只关注特征,并不关注位置信息,不能直接用于检测。所以RFCN在FCN网络中引入了一个概念“position sensitive score map”位置敏感得分图,用来保证全卷积网络对物体位置的敏感性。

先接着说结构的问题,在结构当中继续解释这个position sensitive

2.2结构与流程

下图描述了RFCN的结构,物体检测流程如下:

原始图片经过conv卷积得到feature map1,其中一个subnetwork如同FastRCNN:使用RPN在featuremap1上滑动产生region proposal备用;另一个subnetwork则继续卷积,得到k^2(k=3)深度的featuremap2,根据RPN产生的RoI(region proposal)在这些featuremap2上进行池化和打分分类操作,得到最终的检测结果。

image

观察RFCN结构中的这个放大部分,此处是上文提到的position sensitive的关键。
image

下面这张figure3描述了一次成功的位置敏感性识别,figure3中间的九张featuremap实际上就是位置敏感结构图左侧的九层featuremap,每一层分别对应物体的一个感兴趣部位,就比如[2,2]这张图上中位置代表人体的头部。因而所有位置的响应经过一次池化都保存在figure3右侧33(C+1)的对应位置了(原来是上中现在还是上中,原来是左下现在还是左下),如此位置敏感性得到保留。

当poolingmap九个方框得分都超过一定阈值,我们可以相信这个region proposal中是存在物体的。

image

下图figure4展示了一次失败的检测:由于红框内的poolingmap得分过低。


image

三、总结

上述为RFCN阅读后的笔记,可以看见RFCN的贡献在于:1.引入FCN达成更多的网络参数和特征共享(相比于Faster RCNN)2.解决全卷积网络关于位置敏感性的不足问题(使用position sensitive score map)

其余结构与Faster RCNN相比没有很大的区别(保留RPN,共享第一层用于提取特征的con_Subnetwork)

这篇论文是在没有深入了解过FCN的情况下读的,下一步先读一下FCN以及MaskRCNN那么two stage detecion method可以先告一段落了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容