参考
什么是CMake
CMake允许开发者编写一种平台无关的CMakeList.txt
文件来定制整个编译流程,然后再根据目标用户的平台进一步生成所需的本地化Makefile
和工程文件
,如Unix的Makefile或Windows的Visual Studio工程。从而做到“Write once,run everywhere”。CMake是一个高级编译配置工具,使用CMake作为项目架构系统的知名开源项目有VTK
、ITK
、KDE
、OpenCV
、OSG
等。
在linux
平台下使用CMake生成Makefile并编译的流程如下:
- 编写CMake配置文件CMakeLists.txt
- 执行命令
cmake PATH
或者ccmake PATH
生成Makefile。PATH
是CMakeLists.txt所在的目录。 - 使用
make
命令进行编译
文中涉及实例地址
单个源文件
源码地址
对于简单的项目,只需要写几行代码就可以了。例如,假设现在我们的项目中只有一个源文件 main.cc ,该程序的用途是计算一个数的指数幂。
#include <stdio.h>
#include <stdlib.h>
/**
* power - Calculate the power of number.
* @param base: Base value.
* @param exponent: Exponent value.
*
* @return base raised to the power exponent.
*/
double power(double base, int exponent)
{
int result = base;
int i;
if (exponent == 0) {
return 1;
}
for(i = 1; i < exponent; ++i){
result = result * base;
}
return result;
}
int main(int argc, char *argv[])
{
if (argc < 3){
printf("Usage: %s base exponent \n", argv[0]);
return 1;
}
double base = atof(argv[1]);
int exponent = atoi(argv[2]);
double result = power(base, exponent);
printf("%g ^ %d is %g\n", base, exponent, result);
return 0;
}
编写 CMakeLists.txt
首先编写 CMakeLists.txt 文件,并保存在与 main.cc 源文件同个目录下:
# CMake 最低版本号要求
cmake_minimum_required (VERSION 2.8)
# 项目信息
project (Demo1)
# 指定生成目标
add_executable(Demo main.cc)
CMakeLists.txt 的语法比较简单,由命令
、注释
和空格
组成,其中命令不区分大小写。符号#
后面的内容被认为是注释。命令由命令名称
、小括号
和参数
组成,参数之间使用空格进行间隔。
对于上面的 CMakeLists.txt 文件,依次出现了几个命令:
-
cmake_minimum_required
:指定运行此配置文件所需的 CMake 的最低版本; -
project
:参数值是Demo1
,该命令表示项目的名称是Demo1
。 -
add_executable
: 将名为 main.cc 的源文件编译成一个名称为 Demo 的可执行文件。
编译项目
之后,在当前目录执行 cmake .
,得到 Makefile 后再使用 make
命令编译得到 Demo1
可执行文件。
[root@localhost demo1]# cmake .
-- The C compiler identification is GNU 4.8.5
-- The CXX compiler identification is GNU 4.8.5
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /opt/shares/study/cmake/demo1
[root@localhost demo1]# make
Scanning dependencies of target Demo
[ 50%] Building CXX object CMakeFiles/Demo.dir/main.cc.o
[100%] Linking CXX executable Demo
[100%] Built target Demo
[root@localhost demo1]# ls
CMakeCache.txt CMakeFiles cmake_install.cmake CMakeLists.txt Demo main.cc Makefile
[root@localhost demo1]# ./Demo 5 4
5 ^ 4 is 625
多个源文件
源码地址
上面的例子只有单个源文件。现在假如把 power
函数单独写进一个名为 MathFunctions.c
的源文件里,使得这个工程变成如下的形式:
[root@localhost cmake]# tree demo2
demo2
├── main.cc
├── MathFunctions.cc
└── MathFunctions.h
0 directories, 3 files
main.cc
#include <stdio.h>
#include <stdlib.h>
#include "MathFunctions.h"
int main(int argc, char *argv[])
{
if (argc < 3){
printf("Usage: %s base exponent \n", argv[0]);
return 1;
}
double base = atof(argv[1]);
int exponent = atoi(argv[2]);
double result = power(base, exponent);
printf("%g ^ %d is %g\n", base, exponent, result);
return 0;
}
MathFunctions.h
#ifndef POWER_H
#define POWER_H
extern double power(double base, int exponent);
#endif
MathFunctions.cc
/**
** power - Calculate the power of number.
** @param base: Base value.
** @param exponent: Exponent value.
**
** @return base raised to the power exponent.
**/
double power(double base, int exponent)
{
int result = base;
int i;
if (exponent == 0) {
return 1;
}
for(i = 1; i < exponent; ++i){
result = result * base;
}
return result;
}
这个时候,CMakeLists.txt 可以改成如下的形式:
# CMake 最低版本号要求
cmake_minimum_required (VERSION 2.8)
# 项目信息
project (Demo2)
# 指定生成目标
add_executable(Demo main.cc MathFunctions.cc)
唯一的改动只是在 add_executable
命令中增加了一个MathFunctions.cc
源文件。这样写当然没什么问题,但是如果源文件很多,把所有源文件的名字都加进去将是一件烦人的工作。更省事的方法是使用 aux_source_directory
命令,该命令会查找指定目录下的所有源文件,然后将结果存进指定变量名。其语法如下:
aux_source_directory(<dir> <variable>)
因此,可以修改 CMakeLists.txt 如下:
# CMake 最低版本号要求
cmake_minimum_required (VERSION 2.8)
# 项目信息
project (Demo2)
# 查找当前目录下的所有源文件
# 并将名称保存到 DIR_SRCS 变量
aux_source_directory(. DIR_SRCS)
# 指定生成目标
add_executable(Demo ${DIR_SRCS})
这样,CMake 会将当前目录所有源文件的文件名赋值给变量 DIR_SRCS
,再指示变量DIR_SRCS
中的源文件需要编译成一个名称为 Demo 的可执行文件。
编译项目
同上cmake && make
彻底清除cmake产生的缓存
从单个源文件编译过程的ls
命令结果可以看出,cmake过程中会产生很多缓存(*.cmake, Makefile,CmakeCache.txt, CMakeFiles目录),当目录增多,这些缓存会遍布各个目录,而CMake并没有提供类似cmake clean
这种清理指令。
解决方法
在根部目录下建立一个build目录,然后在build目录中编译即可。
#mkdir build
#cd build
#cmake ${path}
[root@localhost build]# ls
CMakeCache.txt CMakeFiles cmake_install.cmake Demo Makefile
这样,产生的缓存都在build目录下了。
在下一次编译之前,只要先删除build下的内容即可,可以做成一个脚本,避免重复操作。
多个目录,多个源文件
源码地址
现在进一步将 MathFunctions.h 和 MathFunctions.cc 文件移动到 math 目录下
[root@localhost cmake]# tree demo3
demo3
├── main.cc
└── math
├── MathFunctions.cc
└── MathFunctions.h
1 directory, 3 files
因为新增math目录,main.cc文件修改如下:
#include <stdio.h>
#include <stdlib.h>
#include "math/MathFunctions.h"
int main(int argc, char *argv[])
{
if (argc < 3){
printf("Usage: %s base exponent \n", argv[0]);
return 1;
}
double base = atof(argv[1]);
int exponent = atoi(argv[2]);
double result = power(base, exponent);
printf("%g ^ %d is %g\n", base, exponent, result);
return 0;
}
对于这种情况,需要分别在项目根目录 Demo3 和 math 目录里各编写一个 CMakeLists.txt 文件
。为了方便,我们可以先将 math 目录里的文件编译成静态库再由 main 函数调用。
根目录中的 CMakeLists.txt :
# CMake 最低版本号要求
cmake_minimum_required (VERSION 2.8)
# 项目信息
project (Demo3)
# 查找当前目录下的所有源文件
# 并将名称保存到 DIR_SRCS 变量
aux_source_directory(. DIR_SRCS)
# 添加 math 子目录
add_subdirectory(math)
# 指定生成目标
add_executable(Demo main.cc)
# 添加链接库
target_link_libraries(Demo MathFunctions)
该文件添加了下面的内容: 第3行,使用命令add_subdirectory
指明本项目包含一个子目录 math,这样 math 目录下的 CMakeLists.txt 文件和源代码也会被处理 。第6行,使用命令target_link_libraries
指明可执行文件 main 需要连接一个名为 MathFunctions 的链接库 。
子目录中的 CMakeLists.txt:
# 查找当前目录下的所有源文件
# 并将名称保存到 DIR_LIB_SRCS 变量
aux_source_directory(. DIR_LIB_SRCS)
# 生成链接库
add_library (MathFunctions ${DIR_LIB_SRCS})
在该文件中使用命令 add_library
将 src 目录中的源文件编译为静态链接库。
自定义编译选项
源码地址
CMake 允许为项目增加编译选项,从而可以根据用户的环境和需求选择最合适的编译方案。
例如,可以将 MathFunctions 库设为一个可选的库
,如果该选项为 ON
,就使用该库定义的数学函数来进行运算。否则就调用标准库中的数学函数库。
修改CMakeLists文件
我们要做的第一步是在顶层的 CMakeLists.txt 文件中添加该选项:
# CMake 最低版本号要求
cmake_minimum_required (VERSION 2.8)
# 项目信息
project (Demo4)
#set(CMAKE_INCLUDE_CURRENT_DIR ON)
# 是否使用自己的 MathFunctions 库
option (USE_MYMATH "Use provided math implementation" OFF)
# 是否加入 MathFunctions 库
if (USE_MYMATH)
include_directories ("${PROJECT_SOURCE_DIR}/math")
add_subdirectory (math)
set (EXTRA_LIBS ${EXTRA_LIBS} MathFunctions)
endif (USE_MYMATH)
# 加入一个配置头文件,用于处理 CMake 对源码的设置
configure_file (
"${PROJECT_SOURCE_DIR}/config.h.in"
"${PROJECT_BINARY_DIR}/config.h"
#"${PROJECT_SOURCE_DIR}/config.h"
)
include_directories (${PROJECT_BINARY_DIR})
# 查找当前目录下的所有源文件
# 并将名称保存到 DIR_SRCS 变量
aux_source_directory(. DIR_SRCS)
# 指定生成目标
add_executable(Demo ${DIR_SRCS})
#if (USE_MYMATH)
target_link_libraries (Demo ${EXTRA_LIBS})
#endif (USE_MYMATH)
这里有个注意点:
原博客中,Configure_file在option及条件判断之前,导致更改ON
或者OFF
选项不生效
其中:
- 第7行的
configure_file
命令用于加入一个配置头文件 config.h ,这个文件由 CMake 从 config.h.in 生成,通过这样的机制,将可以通过预定义一些参数和变量来控制代码的生成。
- 第7行的
- 第13行的
option
命令添加了一个USE_MYMATH
选项,并且默认值为ON
。
- 第13行的
- 第17行根据
USE_MYMATH
变量的值来决定是否使用我们自己编写的 MathFunctions 库
- 第17行根据
修改 main.cc 文件
之后修改 main.cc 文件,让其根据 USE_MYMATH
的预定义值来决定是否调用标准库还是 MathFunctions 库:
#include <stdio.h>
#include <stdlib.h>
#include "config.h"
#ifdef USE_MYMATH
#include "math/MathFunctions.h"
#else
#include <math.h>
#endif
int main(int argc, char *argv[])
{
if (argc < 3){
printf("Usage: %s base exponent \n", argv[0]);
return 1;
}
double base = atof(argv[1]);
int exponent = atoi(argv[2]);
#ifdef USE_MYMATH
printf("Now we use our own Math library. \n");
double result = power(base, exponent);
#else
printf("Now we use the standard library. \n");
double result = pow(base, exponent);
#endif
printf("%g ^ %d is %g\n", base, exponent, result);
return 0;
}
编写 config.h.in 文件
上面的程序值得注意的是第3行,这里引用了一个 config.h 文件,这个文件预定义了 USE_MYMATH
的值。但我们并不直接编写这个文件,为了方便从 CMakeLists.txt 中导入配置,我们编写一个 config.h.in 文件,内容如下:
#cmakedefine USE_MYMATH
这样 CMake 会自动根据 CMakeLists 配置文件中的设置自动生成 config.h 文件。
编译项目
现在编译一下这个项目,为了便于交互式的选择该变量的值,可以使用 ccmake 2命令:
2 也可以使用
cmake -i
命令,该命令会提供一个会话式的交互式配置界面。
本地运行ccmake不生效,这里暂时先不扩展ccmake,依然用cmake和make命令来编译。
USE_MYMATH 为 OFF
运行结果:
[root@localhost bulid]# ./Demo 3 4
Now we use the standard library.
3 ^ 4 is 81
此时 config.h 的内容为:
/* #undef USE_MYMATH */
USE_MYMATH 为 ON
运行结果:
[root@localhost bulid]# ./Demo 3 4
Now we use our own Math library.
3 ^ 4 is 81
此时 config.h 的内容为:
[root@localhost bulid]# cat config.h
#define USE_MYMATH
安装和测试
源码地址
CMake 也可以指定安装规则
,以及添加测试
。这两个功能分别可以通过在产生 Makefile 后使用 make install
和 make test
来执行。在以前的 GNU Makefile 里,你可能需要为此编写 install 和 test 两个伪目标和相应的规则,但在 CMake 里,这样的工作同样只需要简单的调用几条命令。
定制安装规则
首先先在 math/CMakeLists.txt 文件里添加下面两行:
# 指定 MathFunctions 库的安装路径
install (TARGETS MathFunctions DESTINATION bin)
install (FILES MathFunctions.h DESTINATION include)
指明 MathFunctions 库的安装路径。之后同样修改根目录的 CMakeLists 文件,在末尾添加下面几行:
# 指定安装路径
install (TARGETS Demo DESTINATION bin)
install (FILES "${PROJECT_BINARY_DIR}/config.h"
DESTINATION include)
通过上面的定制,生成的 Demo 文件和 MathFunctions 函数库 libMathFunctions.o 文件将会被复制到/usr/local/bin
中,而 MathFunctions.h 和生成的 config.h 文件则会被复制到 /usr/local/include
中。我们可以验证一下:
[root@localhost build]# cmake ../
-- The C compiler identification is GNU 4.8.5
-- The CXX compiler identification is GNU 4.8.5
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /opt/shares/study/cmake/demo5/build
[root@localhost build]# make
Scanning dependencies of target MathFunctions
[ 25%] Building CXX object math/CMakeFiles/MathFunctions.dir/MathFunctions.cc.o
[ 50%] Linking CXX static library libMathFunctions.a
[ 50%] Built target MathFunctions
Scanning dependencies of target Demo
[ 75%] Building CXX object CMakeFiles/Demo.dir/main.cc.o
[100%] Linking CXX executable Demo
[100%] Built target Demo
[root@localhost build]# make install
[ 50%] Built target MathFunctions
[100%] Built target Demo
Install the project...
-- Install configuration: ""
-- Installing: /usr/local/bin/Demo
-- Installing: /usr/local/include/config.h
-- Installing: /usr/local/bin/libMathFunctions.a
-- Installing: /usr/local/include/MathFunctions.h
[root@localhost build]# ls /usr/local/bin/
Demo iperf3 libMathFunctions.a thrift
[root@localhost build]# ls /usr/local/include/
config.h iperf_api.h MathFunctions.h thrift
顺带一提的是,这里的
/usr/local/
是默认安装到的根目录,可以通过修改CMAKE_INSTALL_PREFIX
变量的值来指定这些文件应该拷贝到哪个根目录
为工程添加测试
添加测试同样很简单。CMake 提供了一个称为 CTest 的测试工具。我们要做的只是在项目根目录的 CMakeLists 文件中调用一系列的add_test
命令。
# 启用测试
enable_testing()
# 测试程序是否成功运行
add_test (test_run Demo 5 2)
# 测试帮助信息是否可以正常提示
add_test (test_usage Demo)
set_tests_properties (test_usage
PROPERTIES PASS_REGULAR_EXPRESSION "Usage: .* base exponent")
# 测试 5 的平方
add_test (test_5_2 Demo 5 2)
set_tests_properties (test_5_2
PROPERTIES PASS_REGULAR_EXPRESSION "is 25")
# 测试 10 的 5 次方
add_test (test_10_5 Demo 10 5)
set_tests_properties (test_10_5
PROPERTIES PASS_REGULAR_EXPRESSION "is 100000")
# 测试 2 的 10 次方
add_test (test_2_10 Demo 2 10)
set_tests_properties (test_2_10
PROPERTIES PASS_REGULAR_EXPRESSION "is 1024")
上面的代码包含了四个测试。第一个测试test_run
用来测试程序是否成功运行并返回 0 值。剩下的三个测试分别用来测试 5 的 平方、10 的 5 次方、2 的 10 次方是否都能得到正确的结果。其中 PASS_REGULAR_EXPRESSION
用来测试输出是否包含后面跟着的字符串。
让我们看看测试的结果:
[root@localhost build]# make test
Running tests...
Test project /opt/shares/study/cmake/demo5/build
Start 1: test_run
1/5 Test #1: test_run ......................... Passed 0.00 sec
Start 2: test_usage
2/5 Test #2: test_usage ....................... Passed 0.00 sec
Start 3: test_5_2
3/5 Test #3: test_5_2 ......................... Passed 0.00 sec
Start 4: test_10_5
4/5 Test #4: test_10_5 ........................ Passed 0.00 sec
Start 5: test_2_10
5/5 Test #5: test_2_10 ........................ Passed 0.00 sec
100% tests passed, 0 tests failed out of 5
Total Test time (real) = 0.01 sec
如果要测试更多的输入数据,像上面那样一个个写测试用例未免太繁琐。这时可以通过编写宏来实现:
enable_testing()
# 定义一个宏,用来简化测试工作
macro (do_test arg1 arg2 result)
add_test (test_${arg1}_${arg2} Demo ${arg1} ${arg2})
set_tests_properties (test_${arg1}_${arg2}
PROPERTIES PASS_REGULAR_EXPRESSION ${result})
endmacro (do_test)
# 使用该宏进行一系列的数据测试
do_test (5 2 "is 25")
do_test (10 5 "is 100000")
do_test (2 10 "is 1024")
[root@localhost build]# make test
Running tests...
Test project /opt/shares/study/cmake/demo5/build
Start 1: test_5_2
1/3 Test #1: test_5_2 ......................... Passed 0.00 sec
Start 2: test_10_5
2/3 Test #2: test_10_5 ........................ Passed 0.00 sec
Start 3: test_2_10
3/3 Test #3: test_2_10 ........................ Passed 0.00 sec
100% tests passed, 0 tests failed out of 3
Total Test time (real) = 0.01 sec
关于 CTest 的更详细的用法可以通过 man 1 ctest
参考 CTest 的文档
支持 gdb
让 CMake 支持 gdb 的设置也很容易,只需要指定 Debug
模式下开启-g
选项:
set(CMAKE_BUILD_TYPE "Debug")
set(CMAKE_CXX_FLAGS_DEBUG "$ENV{CXXFLAGS} -O0 -Wall -g -ggdb")
set(CMAKE_CXX_FLAGS_RELEASE "$ENV{CXXFLAGS} -O3 -Wall")
之后可以直接对生成的程序使用 gdb 来调试。
添加环境检查
源码地址
有时候可能要对系统环境做点检查,例如要使用一个平台相关的特性的时候。在这个例子中,我们检查系统是否自带 pow 函数。如果带有 pow 函数,就使用它;否则使用我们定义的 power 函数。
添加 CheckFunctionExists 宏
首先在顶层 CMakeLists 文件中添加 CheckFunctionExists.cmake
宏,并调用 check_function_exists
命令测试链接器是否能够在链接阶段找到 pow
函数。
# 检查系统是否支持 pow 函数
include (${CMAKE_ROOT}/Modules/CheckFunctionExists.cmake)
set (CMAKE_REQUIRED_INCLUDES math.h)
set (CMAKE_REQUIRED_LIBRARIES m)
check_function_exists (pow HAVE_POW)
将上面这段代码放在configure_file
命令前。
预定义相关宏变量
接下来修改 config.h.in 文件,预定义相关的宏变量。
// does the platform provide pow function?
#cmakedefine HAVE_POW
在代码中使用宏和函数
最后一步是修改 main.cc ,在代码中使用宏和函数:
#ifdef HAVE_POW
printf("Now we use the standard library. \n");
double result = pow(base, exponent);
#else
printf("Now we use our own Math library. \n");
double result = power(base, exponent);
#endif
添加版本号
Demo7
给项目添加和维护版本号是一个好习惯,这样有利于用户了解每个版本的维护情况,并及时了解当前所用的版本是否过时,或是否可能出现不兼容的情况。
首先修改顶层 CMakeLists 文件,在 project 命令之后加入如下两行:
set (Demo_VERSION_MAJOR 1)
set (Demo_VERSION_MINOR 0)
分别指定当前的项目的主版本号和副版本号。
之后,为了在代码中获取版本信息,我们可以修改 config.h.in 文件,添加两个预定义变量:
// the configured options and settings for Tutorial
#define Demo_VERSION_MAJOR @Demo_VERSION_MAJOR@
#define Demo_VERSION_MINOR @Demo_VERSION_MINOR@
这样就可以直接在代码中打印版本信息了:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "config.h"
#include "math/MathFunctions.h"
int main(int argc, char *argv[])
{
if (argc < 3){
// print version info
printf("%s Version %d.%d\n",
argv[0],
Demo_VERSION_MAJOR,
Demo_VERSION_MINOR);
printf("Usage: %s base exponent \n", argv[0]);
return 1;
}
double base = atof(argv[1]);
int exponent = atoi(argv[2]);
#if defined (HAVE_POW)
printf("Now we use the standard library. \n");
double result = pow(base, exponent);
#else
printf("Now we use our own Math library. \n");
double result = power(base, exponent);
#endif
printf("%g ^ %d is %g\n", base, exponent, result);
return 0;
}
[root@localhost build]# ./Demo
./Demo Version 1.0
Usage: ./Demo base exponent
生成安装包
本节将学习如何配置生成各种平台上的安装包,包括二进制安装包和源码安装包。为了完成这个任务,我们需要用到CPack
,它同样也是由 CMake 提供的一个工具,专门用于打包。
首先在顶层的 CMakeLists.txt 文件尾部添加下面几行:
# 构建一个 CPack 安装包
include (InstallRequiredSystemLibraries)
set (CPACK_RESOURCE_FILE_LICENSE
"${CMAKE_CURRENT_SOURCE_DIR}/License.txt")
set (CPACK_PACKAGE_VERSION_MAJOR "${Demo_VERSION_MAJOR}")
set (CPACK_PACKAGE_VERSION_MINOR "${Demo_VERSION_MINOR}")
include (CPack)
上面的代码做了以下几个工作:
- 导入
InstallRequiredSystemLibraries
模块,以便之后导入 CPack 模块; - 设置一些 CPack 相关变量,包括
版权信息
和版本信息
,其中版本信息用了上一节定义的版本号; - 导入 CPack 模块。
接下来的工作是像往常一样构建工程,并执行 cpack 命令。
生成二进制安装包:
cpack -C CPackConfig.cmake
生成源码安装包
cpack -C CPackSourceConfig.cmake
我们可以试一下。在生成项目后,执行 cpack -C CPackConfig.cmake
命令:
[root@localhost build]# make
Scanning dependencies of target Demo
[ 50%] Building CXX object CMakeFiles/Demo.dir/main.cc.o
[100%] Linking CXX executable Demo
[100%] Built target Demo
[root@localhost build]# cpack -C CPackConfig.cmake
CPack: Create package using STGZ
CPack: Install projects
CPack: - Run preinstall target for: Demo4
CPack: - Install project: Demo4
CPack: Create package
CPack: - package: /opt/shares/study/cmake/demo8/build/Demo4-1.0.1-Linux.sh generated.
CPack: Create package using TGZ
CPack: Install projects
CPack: - Run preinstall target for: Demo4
CPack: - Install project: Demo4
CPack: Create package
CPack: - package: /opt/shares/study/cmake/demo8/build/Demo4-1.0.1-Linux.tar.gz generated.
CPack: Create package using TZ
CPack: Install projects
CPack: - Run preinstall target for: Demo4
CPack: - Install project: Demo4
CPack: Create package
CPack: - package: /opt/shares/study/cmake/demo8/build/Demo4-1.0.1-Linux.tar.Z generated.
此时会在该目录下创建 3 个不同格式的二进制包文件:
[root@localhost build]# ls | grep Demo4
Demo4-1.0.1-Linux.sh
Demo4-1.0.1-Linux.tar.gz
Demo4-1.0.1-Linux.tar.Z
这 3 个二进制包文件所包含的内容是完全相同的。我们可以执行其中一个。此时会出现一个由 CPack 自动生成的交互式安装界面:
[root@localhost build]# sh Demo4-1.0.1-Linux.sh
Demo4 Installer Version: 1.0.1, Copyright (c) Humanity
This is a self-extracting archive.
The archive will be extracted to: /opt/shares/study/cmake/demo8/build
If you want to stop extracting, please press <ctrl-C>.
license
Do you accept the license? [yN]:
y
By default the Demo4 will be installed in:
"/opt/shares/study/cmake/demo8/build/Demo4-1.0.1-Linux"
Do you want to include the subdirectory Demo4-1.0.1-Linux?
Saying no will install in: "/opt/shares/study/cmake/demo8/build" [Yn]:
y
Using target directory: /opt/shares/study/cmake/demo8/build/Demo4-1.0.1-Linux
Extracting, please wait...
Unpacking finished successfully
完成后提示安装到了 Demo8-1.0.1-Linux 子目录中,我们可以进去执行该程序:
[root@localhost build]# ./Demo4-1.0.1-Linux/bin/Demo 3 4
Now we use the standard library.
3 ^ 4 is 81
关于 CPack 的更详细的用法可以通过 man 1 cpack
参考 CPack 的文档。
将其他平台的项目迁移到 CMake
CMake 可以很轻松地构建出在适合各个平台执行的工程环境。而如果当前的工程环境不是 CMake ,而是基于某个特定的平台,是否可以迁移到 CMake 呢?答案是可能的。下面针对几个常用的平台,列出了它们对应的迁移方案。
autotools
- am2cmake 可以将 autotools 系的项目转换到 CMake,这个工具的一个成功案例是 KDE 。
- Alternative Automake2CMake 可以转换使用 automake 的 KDevelop 工程项目。
- Converting autoconf tests
qmake
- qmake converter 可以转换使用 QT 的 qmake 的工程。
Visual Studio
-
vcproj2cmake.rb 可以根据 Visual Studio 的工程文件(后缀名是
.vcproj
或.vcxproj
)生成 CMakeLists.txt 文件。 - vcproj2cmake.ps1 vcproj2cmake 的 PowerShell 版本。
- folders4cmake 根据 Visual Studio 项目文件生成相应的 “source_group” 信息,这些信息可以很方便的在 CMake 脚本中使用。支持 Visual Studio 9/10 工程文件。
CMakeLists.txt 自动推导
- gencmake 根据现有文件推导 CMakeLists.txt 文件。
- CMakeListGenerator 应用一套文件和目录分析创建出完整的 CMakeLists.txt 文件。仅支持 Win32 平台。