论文
Independent phenotypic plasticity axes define distinct obesity sub-types
https://www.nature.com/articles/s42255-022-00629-2#Sec15
s42255-022-00629-2.pdf
论文中没有公开代码,但是所有作图数据都公开了,我们可以试着用论文中提供的数据模仿论文中的图
今天的推文重复一下论文中的Fig1a 散点图
散点图背后的圆圈暂时搞不懂是怎么做的,ggplot2里有一个函数geom_contour ()
应该可以实现,但是暂时没有搞清楚怎么使用
两个图我采用拼图的形式来实现,但是拼图怎么把横坐标轴的标题居中暂时搞不明白了,这里出图后再编辑
还有一个新知识点,给坐标轴的截断添加子截断,比如图中20到25之间还有一个小阶段,可以借助ggh4x
来实现
参考帮助文档代码
p <- ggplot(iris, aes(Sepal.Width, Sepal.Length)) +
geom_point()
p + scale_y_continuous(guide = "axis_minor")
# Minor break positions are still controlled by the scale
p + scale_y_continuous(guide = "axis_minor",
minor_breaks = seq(4, 8, by = 0.2))
# Minor tick length is controlled relative to major ticks
p + scale_y_continuous(guide = "axis_minor") +
theme(ggh4x.axis.ticks.length.minor = rel(0.1))
子截断那个长度应该是一个相对值
部分示例数据截图
作图代码
fig1a<-read.delim("data/20220921/fig1a.txt",
header=TRUE,
sep="\t")
library(ggplot2)
#install.packages("ggh4x")
library(ggh4x)
library(latex2exp)
library(tidyverse)
fig1a %>% head()
table(fig1a$genotype)
help(package="ggh4x")
p1<-fig1a %>%
filter(genotype=="WT") %>%
ggplot(aes(x=Lean.Mass,y=Fat.mass))+
geom_point(shape=21,size=5,fill="#929292",color="black")+
scale_x_continuous(limits = c(20,40),
breaks = seq(20,40,5),
guide = "axis_minor",
minor_breaks = seq(22.5, 37.5, by = 5))+
scale_y_continuous(limits = c(0,25),
breaks = seq(0,25,5),
guide = "axis_minor",
minor_breaks = c(8,12))+
theme_classic()+
theme(ggh4x.axis.ticks.length.minor= rel(0.5),
axis.ticks.length.x = unit(0.5,'lines'))+
guides(x=guide_axis_minor(trunc_lower = 20,
trunc_upper = 40),
y=guide_axis_truncated(trunc_lower = 0,
trunc_upper = 25))+
geom_vline(xintercept = 32.5,lty="dashed")+
geom_hline(yintercept = 10,lty="dashed")+
labs(x="Lean mass (g)",y="Fat mass (g)")+
annotate(geom = "point",x=20,y=23+1,shape=21,size=5,fill="#929292")+
annotate(geom = "text",x=20.5,y=23+1,label="WT",size=5,hjust=0)+
annotate(geom = "point",x=20,y=22-1,shape=21,size=5,fill="#0533ff")+
annotate(geom = "text",x=20.5,y=22-1,label=TeX(r"(\textit{Nnat}${^+}{^/}{^-}{^p}$)"),size=5,hjust=0)
p2<-fig1a %>%
filter(genotype=="Nnat+/-p") %>%
ggplot(aes(x=Lean.Mass,y=Fat.mass))+
geom_point(shape=21,size=5,fill="#0533ff",color="black")+
scale_x_continuous(limits = c(20,40),
breaks = seq(20,40,5),
guide = "axis_minor",
minor_breaks = seq(22.5, 37.5, by = 5))+
scale_y_continuous(limits = c(0,25),
breaks = seq(0,25,5),
guide = "axis_minor",
minor_breaks = c(8,12))+
theme_classic()+
theme(ggh4x.axis.ticks.length.minor= rel(0.5),
axis.ticks.length.x = unit(0.5,'lines'),
axis.line.y = element_blank(),
axis.ticks.y = element_blank(),
axis.text.y = element_blank())+
guides(x=guide_axis_minor(trunc_lower = 20,
trunc_upper = 40),
y=guide_axis_truncated(trunc_lower = 0,
trunc_upper = 25))+
geom_vline(xintercept = 32.5,lty="dashed")+
geom_hline(yintercept = 10,lty="dashed")+
labs(x="Lean mass (g)",y=NULL)
library(patchwork)
p1+p2
欢迎大家关注我的公众号
小明的数据分析笔记本
小明的数据分析笔记本 公众号 主要分享:1、R语言和python做数据分析和数据可视化的简单小例子;2、园艺植物相关转录组学、基因组学、群体遗传学文献阅读笔记;3、生物信息学入门学习资料及自己的学习笔记!