基因共表达聚类分析及可视化


欢迎关注天下博客:http://blog.genesino.com/2017/11/gene-cluster/
共表达基因的寻找是转录组分析的一个部分,样品多可以使用WGCNA,样品少可直接通过聚类分析如K-meansK-medoids (比K-means更稳定)或Hcluster或设定pearson correlation阈值来选择共表达基因。

下面将实战演示K-meansK-medoids聚类操作和常见问题:如何聚类分析,如何确定合适的cluster数目,如何绘制共表达密度图、线图、热图、网络图等。

获得模拟数据集

MixSim是用来评估聚类算法效率生成模拟数据集的一个R包。

library(MixSim)
# 获得5个中心点,8维属性的数据模型 
data = MixSim(MaxOmega=0,  K=5,  p=8,  ecc=0.5,  int=c(10, 100))
# 根据模型获得1000次观察的数据集
A <- simdataset(n=1000,  Pi=data$Pi, Mu=data$Mu, S=data$S, n.out=0)
data <- A$X
# 数据标准化
data <- t(apply(data, 1, scale))
# 定义行列名字
rownames(data) <- paste("Gene", 1:1000, sep="_")
colnames(data) <- letters[1:8]
head(data)
##                  a          b         c        d         e          f
## Gene_1 -0.04735251 -0.7147304 0.3836436 1.322786 0.9718988 -0.5468517
## Gene_2  0.09276733 -0.8066507 0.5476909 1.351780 0.8679073 -0.6019107
## Gene_3 -0.08751894 -0.6461075 0.4371506 1.522767 0.8031865 -0.6904081
## Gene_4  0.11065988 -0.7327674 0.4550544 1.379773 0.9304277 -0.5532253
## Gene_5 -0.02722127 -0.7833089 0.6700604 1.448916 0.7128284 -0.6266295
## Gene_6  0.15119823 -0.7468292 0.4859932 1.351159 0.9179421 -0.5625206
##                g         h
## Gene_1 0.4127370 -1.782130
## Gene_2 0.2852284 -1.736813
## Gene_3 0.3420581 -1.681128
## Gene_4 0.1808146 -1.770737
## Gene_5 0.2936467 -1.688292
## Gene_6 0.1821925 -1.779136

K-means

K-means称为K-均值聚类;k-means聚类的基本思想是根据预先设定的分类数目,在样本空间随机选择相应数目的点做为起始聚类中心点;然后将空间中到每个起始中心点距离最近的点作为一个集合,完成第一次聚类;获得第一次聚类集合所有点的平均值做为新的中心点,进行第二次聚类;直到得到的聚类中心点不再变化或达到尝试的上限,则完成了聚类过程。

聚类模拟如下图:

[图片上传失败...(image-9a92f7-1517214714021)]

聚类过程需要考虑下面3点:

1.需要确定聚出的类的数目。可通过遍历多个不同的聚类数计算其类内平方和的变化,并绘制线图,一般选择类内平方和降低开始趋于平缓的聚类数作为较优聚类数, 又称elbow算法。下图中拐点很明显,5

tested_cluster <- 12
wss <- (nrow(data)-1) * sum(apply(data, 2, var))
for (i in 2:tested_cluster) {
    wss[i] <- kmeans(data, centers=i,iter.max=100,  nstart=25)$tot.withinss
}
plot(1:tested_cluster, wss, type="b", xlab="Number of Clusters", ylab="Within groups sum of squares")

[图片上传失败...(image-69c977-1517214714021)]

2.K-means聚类起始点为随机选取,容易获得局部最优,需重复计算多次,选择最优结果。

library(cluster)
library(fpc)
# iter.max: 最大迭代次数
# nstart: 选择的随机集的数目
# centers: 上一步推测出的最优类数目
center = 5
fit <- kmeans(data, centers=center, iter.max=100, nstart=25)
withinss <- fit$tot.withinss
print(paste("Get withinss for the first run", withinss))
## [1] "Get withinss for the first run 44.381088289378"
try_count = 10
for (i in 1:try_count) {
  tmpfit <- kmeans(data, centers=center, iter.max=100, nstart=25)
  tmpwithinss <- tmpfit$tot.withinss
  print(paste(("The additional "), i, 'run, withinss', tmpwithinss))
  if (tmpwithinss < withinss){
    withins <- tmpwithinss
    fit <- tmpfit
  }
}
## [1] "The additional  1 run, withinss 44.381088289378"
## [1] "The additional  2 run, withinss 44.381088289378"
## [1] "The additional  3 run, withinss 44.381088289378"
## [1] "The additional  4 run, withinss 44.381088289378"
## [1] "The additional  5 run, withinss 44.381088289378"
## [1] "The additional  6 run, withinss 44.381088289378"
## [1] "The additional  7 run, withinss 44.381088289378"
## [1] "The additional  8 run, withinss 44.381088289378"
## [1] "The additional  9 run, withinss 44.381088289378"
## [1] "The additional  10 run, withinss 44.381088289378"
fit_cluster = fit$cluster

简单绘制下聚类效果

clusplot(data, fit_cluster, shade=T, labels=5, lines=0, color=T,
lty=4, main='K-means clusters')

[图片上传失败...(image-161587-1517214714021)]

3.预处理:聚类变量值有数量级上的差异时,一般通过标准化处理消除变量的数量级差异。聚类变量之间不应该有较强的线性相关关系。(最开始模拟数据集获取时已考虑)

K-medoids聚类

K-means算法执行过程,首先需要随机选择起始聚类中心点,后续则是根据聚类结点算出平均值作为下次迭代的聚类中心点,迭代过程中计算出的中心点可能在观察数据中,也可能不在。如果选择的中心点是离群点 (outlier)的话,后续的计算就都被带偏了。而K-medoids在迭代过程中选择的中心点是类内观察到的数据中到其它点的距离最小的点,一定在观察点内。两者的差别类似于平均值中值的差别,中值更为稳健。

围绕中心点划分(Partitioning Around Medoids,PAM)的方法是比较常用的(cluster::pam),与K-means相比,它有几个特征: 1.
接受差异矩阵作为参数;2. 最小化差异度而不是欧氏距离平方和,结果更稳健;3. 引入silhouette plot评估分类结果,并可据此选择最优的分类数目; 4. fpc::pamk函数则可以自动选择最优分类数目,并根据数据集大小选择使用pam还是clara (方法类似于pam,但可以处理更大的数据集) 。

fit_pam <- pamk(data, krange=2:10, critout=T)

不同的分类书计算出的silhouette值如下,越趋近于1说明分出的类越好。

## 2  clusters  0.5288058 
## 3  clusters  0.6915659 
## 4  clusters  0.8415226 
## 5  clusters  0.8661989 
## 6  clusters  0.7415207 
## 7  clusters  0.5862313 
## 8  clusters  0.4196284 
## 9  clusters  0.2518583 
## 10  clusters  0.116984

获取分类的数目

fit_pam$nc
## [1] 5
layout(matrix(c(1, 2), 1, 2)) 
plot(fit_pam$pamobject)
layout(matrix(1)) #改回每页一张图

[图片上传失败...(image-9092c-1517214714021)]

获取分类信息

fit_cluster <- fit_pam$pamobject$clustering

数据提取和可视化

pam的输出结果为例 (上面两种方法的输出结果都已处理为了同一格式,后面的代码通用)。

1.获取每类数值的平均值,利用线图一步画图法获得各个类的趋势特征。

cluster_mean <- aggregate(data, by=list(fit_cluster), FUN=mean)
write.table(t(cluster_mean), file="ehbio.pam.cluster.mean.xls", sep='\t',col.names=F, row.names=T, quote=F)

[图片上传失败...(image-a12179-1517214714021)]

2.获取按照分类排序的数据,绘制热图 (点击查看)

dataWithClu <- cbind(ID=rownames(data), data, fit_cluster)
dataWithClu <- as.data.frame(dataWithClu)
dataWithClu <- dataWithClu[order(dataWithClu$fit_cluster),]
write.table(dataWithClu, file="ehbio.pam.cluster.xls", 
        sep="\t", row.names=F, col.names=T, quote=F)

[图片上传失败...(image-7fdf7c-1517214714021)]

3.获取每类数据,绘制多线图和密度图

cluster3 <- data[fit_cluster==3,]
head(cluster3)
##                   a         b         c          d         e        f
## Gene_413 -1.2718728 0.6957162 0.9963399 -0.1895966 0.1786798 1.225407
## Gene_414 -1.1705230 0.6765085 0.8689340 -0.2155533 0.4176178 1.251818
## Gene_415 -0.9545339 0.5635188 0.8437158 -0.1360588 0.2084771 1.316728
## Gene_416 -1.0888687 0.8269888 0.7590209 -0.3090701 0.4478664 1.275057
## Gene_417 -1.1230295 0.8282559 0.9112640 -0.2524612 0.3966905 1.104951
## Gene_418 -1.1291253 0.9574904 0.8405449 -0.1200131 0.1964983 1.155913
##                    g         h
## Gene_413 -0.11021165 -1.524462
## Gene_414 -0.22266636 -1.606135
## Gene_415 -0.03562464 -1.806222
## Gene_416 -0.32047268 -1.590522
## Gene_417 -0.21171923 -1.653951
## Gene_418 -0.27792177 -1.623386
cluster3 <- t(cluster3)

多线图,绘制见线图绘制

[图片上传失败...(image-552b83-1517214714021)]

data_rownames <- rownames(cluster3)
data_mean <- data.frame(id=data_rownames, data_mean=rowMeans(cluster3))
data_mean
##   id  data_mean
## a  a -1.1708878
## b  b  0.7811888
## c  c  0.8443212
## d  d -0.2008149
## e  e  0.2382650
## f  f  1.2601860
## g  g -0.1612029
## h  h -1.5910553
library(reshape2)
library(ggplot2)
data_melt <- melt(cluster3)
colnames(data_melt) <- c("id", "Gene", "Expr")
ggplot(data_melt, aes(id, Expr)) + stat_density_2d(aes(alpha=..level.., group=1)) + stat_smooth(data=data_mean, mapping=aes(x=id, y=data_mean, colour="red", group=1), se=F) + theme(legend.position='none')
## `geom_smooth()` using method = 'loess'

[图片上传失败...(image-2411fc-1517214714021)]

等高线的颜色越深表示对应的Y轴的点越密,对平均值的贡献越大;颜色浅的点表示分布均匀。不代表点的多少。等高线的变化趋势与平均值曲线一致。

参考

  1. GIF来自 https://commons.wikimedia.org/wiki/File:Kmeans_animation.gif
  2. PAM更多描述见http://shiyanjun.cn/archives/1398.html
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容