台湾大学林轩田机器学习基石课程学习笔记6 -- Theory of Generalization

上一节课,我们主要探讨了当M的数值大小对机器学习的影响。如果M很大,那么就不能保证机器学习有很好的泛化能力,所以问题转换为验证M有限,即最好是按照多项式成长。然后通过引入了成长函数mH(N)和dichotomy以及break point的概念,提出2D perceptrons的成长函数mH(N)是多项式级别的猜想。这就是本节课将要深入探讨和证明的内容。

一、Restriction of Break Point

我们先回顾一下上节课的内容,四种成长函数与break point的关系:

下面引入一个例子,如果k=2,那么当N取不同值的时候,计算其成长函数mH(N)是多少。很明显,当N=1时,mH(N)=2,;当N=2时,由break point为2可知,任意两点都不能被shattered(shatter的意思是对N个点,能够分解为2^N种dichotomies);mH(N)最大值只能是3;当N=3时,简单绘图分析可得其mH(N)=4,即最多只有4种dichotomies。

所以,我们发现当N>k时,break point限制了mH(N)值的大小,也就是说影响成长函数mH(N)的因素主要有两个:

1. 抽样数据集N

2. break point k(这个变量确定了假设的类型)

那么,如果给定N和k,能够证明其mH(N)的最大值的上界是多项式的,则根据霍夫丁不等式,就能用mH(N)代替M,得到机器学习是可行的。所以,证明mH(N)的上界是poly(N),是我们的目标。

二、Bounding Function: Basic Cases

现在,我们引入一个新的函数:bounding function,B(N,k)。Bound Function指的是当break point为k的时候,成长函数mH(N)可能的最大值。也就是说B(N,k)是mH(N)的上界,对应mH(N)最多有多少种dichotomy。那么,我们新的目标就是证明:

这里值得一提的是,B(N,k)的引入不考虑是1D postive intrervals问题还是2D perceptrons问题,而只关心成长函数的上界是多少,从而简化了问题的复杂度。

求解B(N,k)的过程十分巧妙:

当k=1时,B(N,1)恒为1。

当N < k时,根据break point的定义,很容易得到B(N,k)=2^N。

当N = k时,此时N是第一次出现不能被shatter的值,所以最多只能有2^N−1个dichotomies,则B(N,k)=2^N−1。

到此,bounding function的表格已经填了一半了,对于最常见的N>k的情况比较复杂,推导过程下一小节再详细介绍。

三、Bounding Function: Inductive Cases

N > k的情况较为复杂,下面给出推导过程:

以B(4,3)为例,首先想着能否构建B(4,3)与B(3,x)之间的关系。

首先,把B(4,3)所有情况写下来,共有11组。也就是说再加一种dichotomy,任意三点都能被shattered,11是极限。

对这11种dichotomy分组,目前分成两组,分别是orange和purple,orange的特点是,x1,x2和x3是一致的,x4不同并成对,例如1和5,2和8等,purple则是单一的,x1,x2,x3都不同,如6,7,9三组。

将Orange去掉x4后去重得到4个不同的vector并成为α,相应的purple为β。那么B(4,3)=2α+β,这个是直接转化。紧接着,由定义,B(4,3)是不能允许任意三点shatter的,所以由α和β构成的所有三点组合也不能shatter(alpha经过去重),即α+β≤B(3,3)。

另一方面,由于α中x4是成对存在的,且α是不能被任意三点shatter的,则能推导出α是不能被任意两点shatter的。这是因为,如果α是不能被任意两点shatter,而x4又是成对存在的,那么x1、x2、x3、x4组成的α必然能被三个点shatter。这就违背了条件的设定。这个地方的推导非常巧妙,也解释了为什么会这样分组。此处得到的结论是α≤B(3,2)

由此得出B(4,3)与B(3,x)的关系为:

最后,推导出一般公式为:

根据推导公式,下表给出B(N,K)值

根据递推公式,推导出B(N,K)满足下列不等式:

上述不等式的右边是最高阶为k-1的N多项式,也就是说成长函数mH(N)的上界B(N,K)的上界满足多项式分布poly(N),这就是我们想要得到的结果。

得到了mH(N)的上界B(N,K)的上界满足多项式分布poly(N)后,我们回过头来看看之前介绍的几种类型它们的mH(N)与break point的关系:

我们得到的结论是,对于2D perceptrons,break point为k=4,mH(N)的上界是N^(k−1)。推广一下,也就是说,如果能找到一个模型的break point,且是有限大的,那么就能推断出其成长函数mH(N)有界。

四、A Pictorial Proof

我们已经知道了成长函数的上界是poly(N)的,下一步,如果能将mH(N)代替M,代入到Hoffding不等式中,就能得到Eout≈Ein的结论:

实际上并不是简单的替换就可以了,正确的表达式为:

该推导的证明比较复杂,我们可以简单概括为三个步骤来证明:

这部分内容,我也只能听个大概内容,对具体的证明过程有兴趣的童鞋可以自行研究一下,研究的结果记得告诉一下我哦。

最终,我们通过引入成长函数mH,得到了一个新的不等式,称为Vapnik-Chervonenkis(VC) bound:

对于2D perceptrons,它的break point是4,那么成长函数mH(N)=O(N^3)。所以,我们可以说2D perceptrons是可以进行机器学习的,只要找到hypothesis能让Ein≈0,就能保证Ein≈Eout。

五、总结

本节课我们主要介绍了只要存在break point,那么其成长函数mH(N)就满足poly(N)。推导过程是先引入mH(N)的上界B(N,k),B(N,k)的上界是N的k-1阶多项式,从而得到mH(N)的上界就是N的k-1阶多项式。然后,我们通过简单的三步证明,将mH(N)代入了Hoffding不等式中,推导出了Vapnik-Chervonenkis(VC) bound,最终证明了只要break point存在,那么机器学习就是可行的。

原文CSDN博客地址:

台湾大学林轩田机器学习基石课程学习笔记6 -- Theory of Generalization

注明:

文章中所有的图片均来自台湾大学林轩田《机器学习基石》课程。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,529评论 5 475
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,015评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,409评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,385评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,387评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,466评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,880评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,528评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,727评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,528评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,602评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,302评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,873评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,890评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,132评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,777评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,310评论 2 342

推荐阅读更多精彩内容