贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法
贝叶斯统计都是以条件概率,联合概率为基础的,所以我们从概率,条件概率,联合概率开始,然后到贝叶斯定理,最后讲一个贝叶斯的应用--垃圾邮件的过滤
概率:事件发生的可能性,比如抛一枚硬币,正面向上的可能性有50%,掷色子点数为6的可能性为1/6。我们用符号表示为P(A)
条件概率:满足某些条件下事件发生的可能性,比如求一个人在买了裤子的前提下再买衣服的概率,我们用符号表示为P(B|A),即事件A发生下B发生的概率
联合概率:多个事件同时发生的可能性,比如抛硬币两次都朝上的概率P(AB) = P(A)P(B),前提是事件是相互独立的互不影响,如果不独立则联合概率为P(AB) = P(A)P(B|A)
当P(B) = P(B|A)时表示事件是相互独立的。贝叶斯定理
利用联合概率我们可以计算出条件概率,比如知道了P(AB)和P(A)我们想知道事件A发生的前提下B发生的概率则P(B|A) = P(AB) / P(A),可如果我们想计算P(A|B)的概率呢?
不巧的是P(A|B)并不等于P(B|A)。
我们从联合概率知道概率乘积的顺序可以交换即P(AB) = P(BA),然后将两个概率展开P(A)P(B|A) = P(B)P(A|B),我们可以清楚的看到我们想要的P(A|B)就在其中
P(A|B) = P(B|A)P(A) / P(B),这就是贝叶斯定理。
P(A)就是先验概率,我们在计算前假设的某个概率,比如抛硬币正面向上的概率为50%
P(B|A)就是后验概率,这是我们看到数据的后计算得到的
P(A|B)就是先验概率和后验概率计算得到的,称似然度
P(B) 在任何情况下该事件发生的概率,称标准化常量 P(B) = P(B1)P(B1|A1) +
P(B2)P(B2|A2).....贝叶斯估计
用极大似然估计可能会出现所要估计的概率值为0的情况,这会影响到后验概率的计算结果,使得分类有偏差。我们使用贝叶斯估计,即添加一个λ修正参数
贝叶斯公式 P(B|A) = (P(AB) + λ) / (P(A) + Sλ) λ >= 0 S表示随机变量各个取值的频数
- 贝叶斯要解决的问题:
逆向概率:如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测 -
那么既然是朴素贝叶斯分类算法,它的核心算法又是什么呢?
是下面这个贝叶斯公式:
换个表达形式就会明朗很多,如下:
我们最终求的p(类别|特征)即可!就相当于完成了我们的任务。
朴素贝叶斯法对条件概率分布做了条件独立性的假设,由于这是一个较强的假设,朴素贝叶斯也由此得名!这一假设使得朴素贝叶斯法变得简单,但有时会牺牲一定的分类准确率。 - 朴素贝叶斯分类的优缺点
优点:
(1) 算法逻辑简单,易于实现(算法思路很简单,只要使用贝叶斯公式转化即可!)
(2)分类过程中时空开销小(假设特征相互独立,只会涉及到二维存储)
缺点:
理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
贝叶斯拼写检查器案列
求解:argmaxc P(c|w) -> argmaxc P(w|c) P(c) / P(w)
- P(c), 文章中出现一个正确拼写词 c 的概率, 也就是说, 在英语文章中, c 出现的概率有多大
- P(w|c), 在用户想键入 c 的情况下敲成 w 的概率. 因为这个是代表用户会以多大的概率把 c 敲错成 w
- argmaxc, 用来枚举所有可能的 c 并且选取概率最大的
# 把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] += 1
return model
NWORDS = train(words(open('big.txt').read()))
要是遇到我们从来没有过见过的新词怎么办. 假如说一个词拼写完全正确, 但是语料库中没有包含这个词, 从而这个词也永远不会出现在训练集中. 于是, 我们就要返回出现这个词的概率是0. 这个情况不太妙, 因为概率为0这个代表了这个事件绝对不可能发生, 而在我们的概率模型中, 我们期望用一个很小的概率来代表这种情况. lambda: 1
NWORDS
编辑距离:
两个词之间的编辑距离定义为使用了几次插入(在词中插入一个单字母), 删除(删除一个单字母), 交换(交换相邻两个字母), 替换(把一个字母换成另一个)的操作从一个词变到另一个词.
#返回所有与单词 w 编辑距离为 1 的集合
def edits1(word):
n = len(word)
return set([word[0:i]+word[i+1:] for i in range(n)] + # deletion
[word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
[word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + # alteration
[word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) # insertion
与 something 编辑距离为2的单词居然达到了 114,324 个
优化:在这些编辑距离小于2的词中间, 只把那些正确的词作为候选词,只能返回 3 个单词: ‘smoothing’, ‘something’ 和 ‘soothing’
#返回所有与单词 w 编辑距离为 2 的集合
#在这些编辑距离小于2的词中间, 只把那些正确的词作为候选词
def edits2(word):
return set(e2 for e1 in edits1(word) for e2 in edits1(e1))
正常来说把一个元音拼成另一个的概率要大于辅音 (因为人常常把 hello 打成 hallo 这样); 把单词的第一个字母拼错的概率会相对小, 等等.但是为了简单起见, 选择了一个简单的方法: 编辑距离为1的正确单词比编辑距离为2的优先级高, 而编辑距离为0的正确单词优先级比编辑距离为1的高.
def known(words): return set(w for w in words if w in NWORDS)
#如果known(set)非空, candidate 就会选取这个集合, 而不继续计算后面的
def correct(word):
candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
return max(candidates, key=lambda w: NWORDS[w])
完整案例代码
import re, collections
def words(text): return re.findall('[a-z]+', text.lower())
def train(features):
model = collections.defaultdict(lambda: 1)
for f in features:
model[f] += 1
return model
NWORDS = train(words(open('big.txt').read()))
alphabet = 'abcdefghijklmnopqrstuvwxyz'
def edits1(word):
n = len(word)
return set([word[0:i]+word[i+1:] for i in range(n)] + # deletion
[word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
[word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + # alteration
[word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet]) # insertion
def known_edits2(word):
return set(e2 for e1 in edits1(word) for e2 in edits1(e1) if e2 in NWORDS)
def known(words): return set(w for w in words if w in NWORDS)
def correct(word):
candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
return max(candidates, key=lambda w: NWORDS[w])
#appl #appla #learw #tess #morw
correct('knon')