🤩 WGCNA | 值得你深入学习的生信分析方法!~(网状分析-第三步-模块与特征分析)

写在前面

之前我们完成了WGCNA输入数据的清洗,网络构建和模块识别。😘
而且还介绍了如何对大型数据分级处理,有效地减少了内存的负担。😷


接着就是最重要的环节了,将不同module与表型或者临床特征相联系,进一步鉴定出有意义的module,并进行module内部的分析,筛选重要基因。🤒

不得不说,东西还是挺多的,而且非常重要,我们一起来试一下吧。🥰

用到的包

rm(list = ls())
library(WGCNA)
library(tidyverse)

示例数据

load("FemaleLiver-01-dataInput.RData")
load("FemaleLiver-02-networkConstruction-auto.RData")

模块与外部特征关联

这里我们需要将moduletraits联系起来,并且采用量化的方式。😘

4.1 量化模块与特征之间的关系

这里我们需要对模块的eigengenes进行提取,并与traits进行相关性分析。🧐

nGenes <-  ncol(datExpr)
nSamples <-  nrow(datExpr)
MEs0 <-  moduleEigengenes(datExpr, moduleColors)$eigengenes
MEs <-  orderMEs(MEs0)
moduleTraitCor <- cor(MEs, datTraits, use = "p")
moduleTraitPvalue <-  corPvalueStudent(moduleTraitCor, nSamples)

用相关性矩阵可视化一下吧。😘

sizeGrWindow(10,6)
textMatrix = paste(signif(moduleTraitCor, 2), "\n(",
signif(moduleTraitPvalue, 1), ")", sep = "");
dim(textMatrix) = dim(moduleTraitCor)
par(mar = c(6, 8.5, 3, 3))

labeledHeatmap(Matrix = moduleTraitCor,
xLabels = names(datTraits),
yLabels = names(MEs),
ySymbols = names(MEs),
colorLabels = FALSE,
colors = greenWhiteRed(50),
textMatrix = textMatrix,
setStdMargins = FALSE,
cex.text = 0.5,
zlim = c(-1,1),
main = paste("Module-trait relationships"))

4.2 计算Gene Significance 和 Module Membership

1️⃣ 接着我们将Gene SignificanceGS) 定义为量化基因traits之间相关性的绝对值。


2️⃣ Module MembershipMM)定义为模块的eigengene与基因表达谱之间的相关性。


这里假设我们感兴趣的是weight这个特征,想找到与weight相关的module以及其中的基因。😘

weight <-  as.data.frame(datTraits$weight_g);
names(weight) <-  "weight"

modNames <-  substring(names(MEs), 3)
geneModuleMembership <-  as.data.frame(cor(datExpr, MEs, use = "p"))
MMPvalue <-  as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples))

names(geneModuleMembership) <-  paste("MM", modNames, sep="")
names(MMPvalue) <-  paste("p.MM", modNames, sep="")
geneTraitSignificance <-  as.data.frame(cor(datExpr, weight, use = "p"))
GSPvalue <-  as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))
names(geneTraitSignificance) <-  paste("GS.", names(weight), sep="")
names(GSPvalue) <-  paste("p.GS.", names(weight), sep="")

4.3 模块内部分析

对于我们找到的有意义的模块,可以进一步的分析模块内部的基因,具体是哪个基因在其中更为重要。😉

当然,这就要用到我们之前计算好的GSMM了。😙

这里我们假设感兴趣的是magenta这个模块吧。🫶

module <-  "magenta"
column <-  match(module, modNames)
moduleGenes <-  moduleColors==module

sizeGrWindow(7, 7)
par(mfrow = c(1,1))
verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
                   abs(geneTraitSignificance[moduleGenes, 1]),
xlab = paste("Module Membership in", module, "module"),
ylab = "Gene significance for body weight",
main = paste("Module membership vs. gene significance\n"),
cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)

4.4 批量输出

可能你也直接输出所有模块的结果,然后再挑选你需要的,那就用这段批量输出的代码吧。😘

modNames <-  substring(names(MEs), 3)

geneModuleMembership <-  as.data.frame(cor(datExpr, MEs, use = "p"))

MMPvalue <-  as.data.frame(corPvalueStudent(as.matrix(geneModuleMembership), nSamples))

names(geneModuleMembership) <-  paste("MM", modNames, sep="")

names(MMPvalue) = paste("p.MM", modNames, sep="")

traitNames <- names(datTraits)

geneTraitSignificance <-  as.data.frame(cor(datExpr, datTraits, use = "p"))

GSPvalue <-  as.data.frame(corPvalueStudent(as.matrix(geneTraitSignificance), nSamples))

names(geneTraitSignificance) <-  paste("GS.", traitNames, sep="")

names(GSPvalue) <-  paste("p.GS.", traitNames, sep="")

for (trait in traitNames){
  traitColumn = match(trait,traitNames)  
  for (module2 in modNames){
    column = match(module2, modNames)
    moduleGenes = moduleColors==module2
    if (nrow(geneModuleMembership[moduleGenes,]) > 1){
      pdf(file = paste0("./module_", trait, "_", module,".pdf"),
          width=7,height=7)
      
      par(mfrow = c(1,1))
      
      verboseScatterplot(abs(geneModuleMembership[moduleGenes, column]),
                         abs(geneTraitSignificance[moduleGenes, traitColumn]),
                         xlab = paste("Module Membership in", module, "module"),
                         ylab = paste("Gene significance for ",trait),
                         main = paste("Module membership vs. gene significance\n"),
                         cex.main = 1.2, cex.lab = 1.2, cex.axis = 1.2, col = module)
      dev.off()
    }
  }
}

结果汇总输出

5.1 读入并整理注释文件

annot <-  read.csv(file = "./FemaleLiver-Data/GeneAnnotation.csv");
dim(annot)
names(annot)
probes <-  names(datExpr)
probes2annot <-  match(probes, annot$substanceBXH)
sum(is.na(probes2annot))

5.2 整理并输出结果文件

geneInfo0 <-  data.frame(substanceBXH = probes,
                         geneSymbol = annot$gene_symbol[probes2annot],
                         LocusLinkID = annot$LocusLinkID[probes2annot],
                         moduleColor = moduleColors,
                         geneTraitSignificance,
                         GSPvalue)

modOrder <-  order(-abs(cor(MEs, weight, use = "p")))

for (mod in 1:ncol(geneModuleMembership))
{
oldNames = names(geneInfo0)
geneInfo0 = data.frame(geneInfo0, geneModuleMembership[, modOrder[mod]],
MMPvalue[, modOrder[mod]]);
names(geneInfo0) = c(oldNames, paste("MM.", modNames[modOrder[mod]], sep=""),
paste("p.MM.", modNames[modOrder[mod]], sep=""))
}
geneOrder <-  order(geneInfo0$moduleColor, -abs(geneInfo0$GS.weight));
geneInfo <-  geneInfo0[geneOrder, ]

write.csv(geneInfo, file = "geneInfo.csv")

DT::datatable(geneInfo)

如何引用

📍
Langfelder, P., Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008). https://doi.org/10.1186/1471-2105-9-559


<center>最后祝大家早日不卷!~</center>


点个在看吧各位~ ✐.ɴɪᴄᴇ ᴅᴀʏ 〰

<center> <b>📍 往期精彩 <b> </center>

📍 <font size=1>🤩 ComplexHeatmap | 颜狗写的高颜值热图代码!</font>
📍 <font size=1>🤥 ComplexHeatmap | 你的热图注释还挤在一起看不清吗!?</font>
📍 <font size=1>🤨 Google | 谷歌翻译崩了我们怎么办!?(附完美解决方案)</font>
📍 <font size=1>🤩 scRNA-seq | 吐血整理的单细胞入门教程</font>
📍 <font size=1>🤣 NetworkD3 | 让我们一起画个动态的桑基图吧~</font>
📍 <font size=1>🤩 RColorBrewer | 再多的配色也能轻松搞定!~</font>
📍 <font size=1>🧐 rms | 批量完成你的线性回归</font>
📍 <font size=1>🤩 CMplot | 完美复刻Nature上的曼哈顿图</font>
📍 <font size=1>🤠 Network | 高颜值动态网络可视化工具</font>
📍 <font size=1>🤗 boxjitter | 完美复刻Nature上的高颜值统计图</font>
📍 <font size=1>🤫 linkET | 完美解决ggcor安装失败方案(附教程)</font>
📍 <font size=1>......</font>

本文由mdnice多平台发布

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,607评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,047评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,496评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,405评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,400评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,479评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,883评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,535评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,743评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,544评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,612评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,309评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,881评论 3 306
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,891评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,136评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,783评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,316评论 2 342

推荐阅读更多精彩内容