RDD常见算子

RDD算子的分类

RDD算子从对数据操作上讲,大致分为两类: 转换(transformations)和行动(action)

转换算子: 将一个RDD转换为另一个RDD,这种变换并不触发提交作业,完成作业中间过程处理

行动算子:将一个RDD进行求值或者输出,这类算子会触发 SparkContext 提交 Job 作业

一行wordcount: sc.textFile("hdfs://master01:9000").flatMap(_.split(" ")).map((_,1)).reduceByKey(_+_).saveAsTextFile("hdfs://master01:9000/out")  //textFile读取的文件后,成了一行一行的,然后flatMap就是将每一行都按" "分割,现在的状态就是单个单个的单词,一行就是一个集合,map则将每一个word都进行作用,_表示匹配,标为1,形成key为单词,value为数字1,形成多个集合.reduceByKey就是将所有的key相同的进行聚合,value相加.,saveAsTextFile是输出到HDFS.


转换算子(15)

1.map

将函数应用于RDD中的每一元素,并返回一个新的RDD

map

2.flatMap

将函数应用于RDD中的每一项,并每一项都成了集合,,再将所有集合压成一个大集合

flarMap

3.mapPartitions

mapPartitions 函数获取到每个分区的迭代器,利用获取到的迭代器对整个分区内的元素计算

mapPartitions

4.glom

将每个分区里的元素都变成数组

glom

5.union

将两个RDD进行合并,但是得保证两个RDD里面得数据类型得一样

union

6. cartesian

对两个RDD内得所有数据进行笛卡尔积运算,也就是一个RDD内得任何元素与另一个RDD内的任何元素进行运算,如(1,2,3),(4,5,6),笛卡儿积之后: (14),(15),(16),(24),(25),(26),(34),(35),(36).

cartesian

7.guoupBy

将RDD内的元素转换为Key,Value形式,元素相同的就是相同的key,再把元素相同的key分为一组

groupBy

8.filter

通过提供的产生boolean条件的表达式来返回符合结果为True的新RDD

filter

9.distinct

将RDD内的元素进行去重

distinct

10.subtract

类似两个RDD进行差运算,RDD1去除RDD1与RDD2共同的元素,得到一个新的RDD

subtract

11.sample

sample 将 RDD 这个集合内的元素进行采样,获取所有元素的子集.用户可以设定是否有放回的抽样,百分比,随机种子,进而决定采样方式,内部实现是生成 SampledRDD(withReplacement, fraction, seed).  withReplacement=true,表示有放回的抽样。false,表示无放回的抽样。

sample

12.cache

通过cache将 RDD 元素从磁盘缓存到内存

cache

13.mapValues

针对(Key, Value)型数据中的 Value 进行 Map 操作,而不对 Key 进行处理.


mapValues

14.reduceByKey

reduceByKey就是对RDD中Key相同的元素的Value进行合并操作,然后与原RDD中的Key组成一个新的KV对。

reduceByKey

15.partitionBy

partitionBy函数对RDD进行分区操作;  如果原有RDD的分区器和现有分区器(partitioner)一致,则不重分区,如果不一致,则相当于根据分区器生成一个新的ShuffledRDD。


行动算子(10)

1.foreach

foreach 对 RDD 中的每个元素都应用 f 函数操作,不返回 RDD 和 Array,而是返回Uint,就是遍历.

2.saveAsTextFile

函数将数据输出,存储到 HDFS 的指定目录.下面为 saveAsTextFile 函数的内部实现,其内部

通过调用 saveAsHadoopFile 进行实现:

this.map(x => (NullWritable.get(), new Text(x.toString))).saveAsHadoopFile[TextOutputFormat[NullWritable, Text]](path)

将 RDD 中的每个元素映射转变为 (null, x.toString),然后再将其写入 HDFS。

3.saveAsObjectFile

saveAsObjectFile将分区中的每10个元素组成一个Array,然后将这个Array序列化,映射为(Null,BytesWritable(Y))的元素,写入HDFS为SequenceFile的格式。

下面代码为函数内部实现。

map(x=>(NullWritable.get(),new BytesWritable(Utils.serialize(x)))

saveAsObjectFile

4.collect

collect 将数据集中所有的元素以Array形式返回。在这个数组上运用 scala 的函数式操作。

collect

5.collectAsMap

collectAsMap对(K,V)型的RDD数据返回一个单机HashMap。 对于重复K的RDD元素,后面的元素覆盖前面的元素。

collectAsMap

6.reduceByKeyLocally

实现的是先reduce再collectAsMap的功能,先对RDD的整体进行reduce操作,然后再收集所有结果返回为一个HashMap。

7.count

count 返回整个 RDD 的元素个数.  代码实现为:defcount():Long=sc.runJob(this,Utils.getIteratorSize_).sum

count

8.first

返回数据集中的第一个元素, 类似于take(1).  代码实现如下:

rdd1.first()

res10: Int = 1

9.task

Take(n)返回一个包含数据集中前n个元素的数组, 当前该操作不能并行。

代码实现如下:  rdd1.take(3)    res11: Array[Int] = Array(1, 2, 3)

10.reduce

reduce将RDD中元素两两传递给输入函数,同时产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后只有一个值为止,比如累加.

比如 1 to10,然后从1+到10,一共等于55;

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341