一图看懂ELK架构

概述

ELK是一个免费开源的日志分析架构技术栈总称,官网https://www.elastic.co/cn。包含三大基础组件,分别是Elasticsearch、 Logstash、 Kibana。但实际上ELK不仅仅适用于日志分析,它还可以支持其它任何数据搜索、分析和收集的场景,日志分析和收集只是更具有代表性、并非唯一性。

ELK架构

随着新成员的加入,如Beats、 elastic cloud,形成了Elastic Stack。
Elastic Stack

特性

  • 处理方式灵活: elasticsearch是目前最流行的准实时全文检索引擎,具有高速检索大数据的能力。
  • 配置简单:安装elk的每个组件,仅需配置每个组件的一个配置文件即可。修改处不多,因为大量参数已经默认配在系统中,修改想要修改的选项即可。
  • 接口简单:采用json形式RESTFUL API接受数据并响应,无关语言。
  • 性能高效: elasticsearch基于优秀的全文搜索技术Lucene,采用倒排索引,可以轻易地在百亿级别数据量下,搜索出想要的内容,并且是秒级响应。
  • 灵活扩展: elasticsearch和logstash都可以根据集群规模线性拓展, elasticsearch内部自动实现集群协作。
  • 数据展现华丽: kibana作为前端展现工具,图表华丽,配置简单。

组件构成

1.Elasticsearch

Elasticsearch 是使用java开发,基于Lucene、分布式、通过Restful方式进行交互的近实时搜索平台框架。它的特点有:分布式,零配置,自动发现,索引自动分片,索引副本机制, restful风格接口,多数据源,自动搜索负载等。

2.Logstash

Logstash 基于java开发,是一个数据抽取转化工具。一般工作方式为c/s架构, client端安装在需要收集信息的主机上, server端负责将收到的各节点日志进行过滤、修改等操作在一并发往elasticsearch或其他组件上去。

3.Kibana

Kibana 基于nodejs,也是一个开源和免费的可视化工具。 Kibana可以为 Logstash 和 ElasticSearch 提供的日志分析友好的 Web 界面,可以汇总、分析和搜索重要数据日志。

4.Beats

Beats 平台集合了多种单一用途数据采集器。它们从成百上千或成千上万台机器和系统向 Logstash 或 Elasticsearch发送数据。
Beats由如下组成:

  • Packetbeat
    轻量型网络数据采集器,用于深挖网线上传输的数据,了解应用程序动态。 Packetbeat 是一款轻量型网络数据包分析器,能够将数据发送至 Logstash 或 Elasticsearch。其支 持ICMP (v4 and v6)、 DNS、 HTTP、Mysql、 PostgreSQL、 Redis、 MongoDB、 Memcache等协议。
  • Filebeat
    轻量型日志采集器。当您要面对成百上千、甚至成千上万的服务器、虚拟机和容器生成的日志时,请告别SSH 吧。 Filebeat 将为您提供一种轻量型方法,用于转发和汇总日志与文件,让简单的事情不再繁杂。
  • Metricbeat
    轻量型指标采集器。 Metricbeat 能够以一种轻量型的方式,输送各种系统和服务统计数据,从 CPU 到内存,从 Redis 到 Nginx,不一而足。可定期获取外部系统的监控指标信息,其可以监控、收集 Apache http、HAProxy、 MongoDB、 MySQL、 Nginx、 PostgreSQL、 Redis、 System、 Zookeeper等服务。
  • Winlogbeat
    轻量型 Windows 事件日志采集器。用于密切监控基于 Windows 的基础设施上发生的事件。
    Winlogbeat 能够以一种轻量型的方式,将 Windows 事件日志实时地流式传输至 Elasticsearch 和 Logstash。
  • Auditbeat
    轻量型审计日志采集器。收集您 Linux 审计框架的数据,监控文件完整性。 Auditbeat 实时采集这些事件,然后发送到 Elastic Stack 其他部分做进一步分析。
  • Heartbeat
    面向运行状态监测的轻量型采集器。通过主动探测来监测服务的可用性。通过给定 URL 列表,
    Heartbeat 可以询问:网站运行正常吗? Heartbeat 会将此信息和响应时间发送至 Elastic 的其他部分,以进行进一步分析。
  • Functionbeat
    面向云端数据的无服务器采集器。在作为一项功能部署在云服务提供商的功能即服务 (FaaS) 平台上后, Functionbeat 即能收集、传送并监测来自您的云服务的相关数据。

5. Elastic cloud

基于 Elasticsearch 的软件即服务(SaaS)解决方案。通过 Elastic 的官方合作伙伴使用托管的Elasticsearch 服务。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容