Kafka问题总结及性能优化最佳实践

一、书写背景:

  最近陆续碰到不少朋友在导论在使用kafka时遇到了不少问题,特别在高流量的场景下,更是问题百出,防不胜防。刚好在之前的项目中也遇到了类似场景的问题,通过各种摸爬滚打,算是最近解决了遇到的问题。因此趁此机会把实践与大家共享,期望对各位遇到问题的朋友有一定的帮助。

二、最佳实践:

1.  安装及时使用:

   kafka的安装及基本使用可参考:https://www.cnblogs.com/dadonggg/p/8205302.html

2. 百亿流量规划:


流量分解及环境分析过程


3. JVM参数设置

kafka是scala语言开发,运行在JVM上,需要对JVM参数合理设置,修改bin/kafka-start-server.sh中的jvm设置,假设机器是32G内存,可以如下设置:

export KAFKA_HEAP_OPTS="‐Xmx16G‐Xms16G‐Xmn10G‐XX:MetaspaceSize=256M‐XX:+UseG1GC‐XX:MaxGCPauseMillis=50‐XX:G1HeapRegionSize=16M"

这种大内存的情况一般都要用G1垃圾收集器,因为年轻代内存比较大,用G1可以设置GC最大停顿时间(针对每个参数的具体含义如有不清楚的可百度,在此不对其参数的含义做过多的讲解),不至于一次minorgc就花费太长时间,当然,因为像kafka,rocketmq,es这些中间件,写数据到磁盘会用到操作系统的page cache(对于系统的所有文件I/O请求,操作系统都是通过page cache机制实现的,对于操作系统而言,磁盘文件都是由一系列的数据块顺序组成,数据块的大小随系统不同而不同,x86 linux系统下是4KB(一个标准页面大小)。内核在处理文件I/O请求时,首先到page cache中查找(page cache中的每一个数据块都设置了文件以及偏移信息),如果未命中,则启动磁盘I/O,将磁盘文件中的数据块加载到page cache中的一个空闲块。之后再copy到用户缓冲区中),所以JVM内存不宜分配过大,需要给操作系统的缓存留出几个G。

4. 线上问题及优化:

1). 消息丢失情况:

消息发送端:

(1)acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。大数据统计报表场景,对性能要求很高,对数据丢失不敏感的情况可以用这种。

(2)acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。

(3)acks=-1或all: 这意味着leader需要等待所有备份(min.insync.replicas配置的备份个数)都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。当然如果min.insync.replicas配置的是1则也可能丢消息,跟acks=1情况类似。

消息消费端:

如果消费这边配置的是自动提交,万一消费到数据还没处理完,就自动提交offset了,但是此时你consumer直接宕机了,未处理完的数据丢失了,下次也消费不到了。

2). 消息重复消费

消息发送端:

发送消息如果配置了重试机制,比如网络抖动时间过长导致发送端发送超时,实际broker可能已经接收到消息,但发送方会重新发送消息

消息消费端:

如果消费这边配置的是自动提交,刚拉取了一批数据处理了一部分,但还没来得及提交,服务挂了,下次重启又会拉取相同的一批数据重复处理

一般消费端都是要做消费幂等处理的。

3). 消息乱序

如果发送端配置了重试机制,kafka不会等之前那条消息完全发送成功才去发送下一条消息,这样可能会出现,发送了1,2,3条消息,第一条超时了,后面两条发送成功,再重试发送第1条消息,这时消息在broker端的顺序就是2,3,1了

所以,是否一定要配置重试要根据业务情况而定。也可以用同步发送的模式去发消息,当然acks不能设置为0,这样也能保证消息发送的有序。

kafka保证全链路消息顺序消费,需要从发送端开始,将所有有序消息发送到同一个分区,然后用一个消费者去消费,但是这种性能比较低,可以在消费者端接收到消息后将需要保证顺序消费的几条消费发到内存队列(可以搞多个),一个内存队列开启一个线程顺序处理消息。

4). 消息积压

(1)线上有时因为发送方发送消息速度过快,或者消费方处理消息过慢,可能会导致broker积压大量未消费消息。

此种情况如果积压了上百万未消费消息需要紧急处理,可以修改消费端程序,让其将收到的消息快速转发到其他topic(可以设置很多分区),然后再启动多个消费者同时消费新主题的不同分区。

(2)由于消息数据格式变动或消费者程序有bug,导致消费者一直消费不成功,也可能导致broker积压大量未消费消息。

此种情况可以将这些消费不成功的消息转发到其它队列里去(类似死信队列),后面再慢慢分析死信队列里的消息处理问题。

5). 延时队列

延时队列存储的对象是延时消息。所谓的“延时消息”是指消息被发送以后,并不想让消费者立刻获取,而是等待特定的时间后,消费者才能获取这个消息进行消费,延时队列的使用场景有很多, 比如 :

1)在订单系统中, 一个用户下单之后通常有 30 分钟的时间进行支付,如果 30 分钟之内没有支付成功,那么这个订单将进行异常处理,这时就可以使用延时队列来处理这些订单了。

2)订单完成1小时后通知用户进行评价。

实现思路:发送延时消息时先把消息按照不同的延迟时间段发送到指定的队列中(topic_1s,topic_5s,topic_10s,...topic_n,这个一般不能支持任意时间段的延时),然后通过定时器进行轮询消费这些topic,查看消息是否到期,如果到期就把这个消息发送到具体业务处理的topic中,队列中消息越靠前的到期时间越早,具体来说就是定时器在一次消费过程中,对消息的发送时间做判断,看下是否延迟到对应时间了,如果到了就转发,如果还没到这一次定时任务就可以提前结束了。

6). 消息回溯

如果某段时间对已消费消息计算的结果觉得有问题,可能是由于程序bug导致的计算错误,当程序bug修复后,这时可能需要对之前已消费的消息重新消费,可以指定从多久之前的消息回溯消费,这种可以用consumer的offsetsForTimes、seek等方法指定从某个offset偏移的消息开始消费。

7). 分区数越多吞吐量越高吗

可以用kafka压测工具自己测试分区数不同,各种情况下的吞吐量

# 往test里发送一百万条消息(--num-records 1000000),每条设置1KB(record-size 1024字节)

# throughput 用来进行限流控制,当设定的值小于 0 时不限流,当设定的值大于 0 时,当发送的吞吐量大于该值时就会被阻塞一段时间

bin/kafka-producer-perf-test.sh --topic test --num-records 1000000 --record-size 1024 --throughput -1 --producer-props bootstrap.servers=192.168.2.4:9092 acks=1

压测效果图

网络上很多资料都说分区数越多吞吐量越高 , 但从压测结果来看,分区数到达某个值吞吐量反而开始下降,实际上很多事情都会有一个临界值,当超过这个临界值之后,很多原本符合既定逻辑的走向又会变得不同。一般情况分区数跟集群机器数量相当就差不多了。

当然吞吐量的数值和走势还会和磁盘、文件系统、 I/O调度策略等因素相关。

注意:如果分区数设置过大,比如设置10000,可能会设置不成功,后台会报错"java.io.IOException : Too manyopenfiles"。

异常中最关键的信息是“ Too many open flies”,这是一种常见的 Linux 系统错误,通常意味着文件描述符不足,它一般发生在创建线程、创建 Socket、打开文件这些场景下 。 在 Linux系统的默认设置下,这个文件描述符的个数不是很多 ,通过 ulimit -n 命令可以查看:一般默认是1024,可以将该值增大,比如:ulimit-n 65535

8). 消息传递保障

at most once(消费者最多收到一次消息,0--1次):acks = 0 可以实现。

at least once(消费者至少收到一次消息,1--多次):ack = all 可以实现。

exactly once(消费者刚好收到一次消息):at least once 加上消费者幂等性可以实现,还可以用kafka生产者的幂等性来实现。

kafka生产者的幂等性:因为发送端重试导致的消息重复发送问题,kafka的幂等性可以保证重复发送的消息只接收一次,只需在生产者加上参数 props.put(“enable.idempotence”, true) 即可,默认是false不开启 。--也可以在消费端的业务代码中实现幂等性

9). kafka的事务

Kafka的事务不同于Rocketmq,Rocketmq是保障本地事务(比如数据库)与mq消息发送的事务一致性,Kafka的事务主要是保障一次发送多条消息的事务一致性(要么同时成功要么同时失败),一般在kafka的流式计算场景用得多一点,比如,kafka需要对一个topic里的消息做不同的流式计算处理,处理完分别发到不同的topic里,这些topic分别被不同的下游系统消费(比如hbase,redis,es等),这种我们肯定希望系统发送到多个topic的数据保持事务一致性。Kafka要实现类似Rocketmq的分布式事务需要额外开发功能。

kafka的事务处理可以参考官方文档

实现代码可参考如下:

Properties props = new Properties();

props.put("bootstrap.servers", "localhost:9092");

props.put("transactional.id", "my-transactional-id");

Producer<String, String> producer = new KafkaProducer<>(props, new StringSerializer(), new StringSerializer());

//初始化事务

producer.initTransactions();

try {

    //开启事务

    producer.beginTransaction();

    for (int i = 0; i < 100; i++){

        //发到不同的主题的不同分区

        producer.send(new ProducerRecord<>("hdfs-topic", Integer.toString(i), Integer.toString(i)));

        producer.send(new ProducerRecord<>("es-topic", Integer.toString(i), Integer.toString(i)));

        producer.send(new ProducerRecord<>("redis-topic", Integer.toString(i), Integer.toString(i)));

    }

    //提交事务

    producer.commitTransaction();

} catch (ProducerFencedException | OutOfOrderSequenceException | AuthorizationException e) {

    // We can't recover from these exceptions, so our only option is to close the producer and exit.

    producer.close();

} catch (KafkaException e) {

    // For all other exceptions, just abort the transaction and try again.

    //回滚事务

    producer.abortTransaction();

}

producer.close();

10). kafka高性能的原因

(1). 磁盘顺序读写:kafka消息不能修改以及不会从文件中间删除保证了磁盘顺序读,kafka的消息写入文件都是追加在文件末尾,不会写入文件中的某个位置(随机写)保证了磁盘顺序写。

(2). 数据传输的零拷贝(零拷贝主要指数据操作时在内核空间可直接完成,不用与用户空间(JVM)进行交互),其原理如下:


(3). 读写数据的批量batch处理以及压缩传输

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容