基于tensorflow的label smoothing实现

tensorflow实现

方法1:

tf.losses.softmax_cross_entropy(onehot_labels=y, logits=logit, label_smoothing=0.001)

方法2:

smoothing = 0.001
y -= smoothing * (y - 1. / tf.cast(y.shape[-1], y.dtype))
loss =  tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,
                                                             logits=logit))

label smoothing原理 (标签平滑)

对于分类问题,常规做法时将类别做成one-hot vector,然后在网络最后一层全链接的输出后接一层softmax,softmax的输出是归一的,因此我们认为softmax的输出就是该样本属于某一类别的概率。由于标签是类别的one-hot vector, 因此表征我们已知该样本属于某一类别是概率为1的确定事件,而其他类别概率都为0。

softmax:p(k|x) = frac{exp(z_k)}{sum_i^{i=K}{exp(z_i)}}

其中 z_i 一般叫做 logits ,即未被归一化的对数概率 。我们用 p 代表 predicted probability,用 q 代表 groundtruth 。在分类问题中loss函数一般用交叉熵,即:

cross entropy loss: loss = -sum_{k=1}^{K}{q(k|x) log(p(k|x))}

交叉熵对于logits可微,且偏导数形式简单:frac{partial{loss}}{partial{z_k}}=p(k) - q(k) ,显然梯度时有界的(-1到1)。

对于groundtruth为one-hot的情况,即每个样本只有惟一的类别,则 q(k) = delta_{k,y}y 是真实类别。其中 delta 是Dirac函数。要用predicted label 去拟合这样的函数具有两个问题:首先,无法保证模型的泛化能力(generalizing),容易导致过拟合; 其次,全概率和零概率将鼓励所属类别和非所属类别之间的差距尽可能拉大,而由于以上可知梯度有界,因此很难adapt。这种情况源于模型过于相信预测的类别。( Intuitively, this happens because the model becomes too confident about its predictions.)

因此提出一种机制,即要使得模型可以 less confident 。思路如下:考虑一个与样本无关的分布 u(k) ,将我们的 label 即真实标签 q(k) 变成 q^{'}(k) ,其中:

可以理解为,对于 Dirac 函数分布的真实标签,我们将它变成以如下方式获得:首先从标注的真实标签的Dirac分布中取定,然后,以一定的概率 epsilon ,将其替换为在 u(k) 分布中的随机变量。因此可以避免上述的问题。而 u(k) 我们可以用先验概率来充当。如果用 uniform distribution 的话就是 1/K 。该操作就叫做 label-smoothing regularization, or LSR 。

对于该操作的数学物理含义可以用交叉熵的概念说明:

交叉熵

可以认为 loss 函数分别以不同的权重对 predicted label 与标注的label 的差距 以及 predicted label 与 先验分布的差距 进行惩罚,可以对分类性能有一定程度的提升。(In our ImageNet experiments with K = 1000 classes, we used u(k) = 1/1000 and = 0.1. For ILSVRC 2012, we have found a consistent improvement of about 0.2% absolute both for top-1 error and the top-5 error )

reference:

1. Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[C] Computer Vision and Pattern Recognition. IEEE, 2016:2818-2826.

2. https://github.com/tensorflow/cleverhans/blob/master/cleverhans_tutorials/mnist_tutorial_tf.py

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容

  • A 准确率(accuracy) 分类模型预测准确的比例。在多类别分类中,准确率定义如下: 在二分类中,准确率定义为...
    630d0109dd74阅读 1,305评论 0 3
  • 本文编译自谷歌开发者机器学习术语表项目,介绍了该项目所有的术语与基本解释。 A 准确率(accuracy) 分类模...
    630d0109dd74阅读 1,980评论 0 1
  • 本系列文章面向深度学习研发者,希望通过Image Caption Generation,一个有意思的具体任务,深入...
    imGeek阅读 1,780评论 0 8
  • 机器学习术语表 本术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义。 A A/B 测试 (...
    yalesaleng阅读 1,957评论 0 11
  • “马克思主义的道理千条万绪,归根到底,就是一句话,造反有理”。为纪念马克思诞辰二百周年,中国邮政特地发行了一...
    退休人老高阅读 497评论 0 1