java中的阻塞队列

前言

在去年的面试过程中,被面试官问道“阻塞队列”这个问题,因为当时并没有对此问题进行深入理解,只是按照自己的理解说明了该问题,最后面试结果也不太好,今天对该问题进行简要的面试并记录如下;如有错误,欢迎指正。

什么是阻塞队列

在数据结构中,队列遵循FIFO(先进先出)原则。在java中,Queue接口定义了定义了基本行为,由子类完成实现,常见的队列有ArrayDequeLinkedList等,这些都是非线程安全的,在java 1.5中新增了阻塞队列,当队列满时,添加元素的线程呈阻塞状态;当队列为空时,获取元素的线程呈阻塞状态。

生产者、消费者模型

微信截图_20210614125821.png

生产者将元素添加到队列中,消费中获取数据后完成数据处理。两者通过队列解决了生产者和消费者的耦合关系;当生产者的生产速度与消费者的消费速度不一致时,可以通过大道缓冲的目的。

阻塞队列的使用场景

  1. 线程池

    在线程池中,当工作线程数大于等于corePoolSize时,后续的任务后添加到阻塞队列中;

目前有那些阻塞队列

在java中,BlockingQueue接口定义了阻塞队列的行为,常用子类是ArrayBlockingQueueLinkedBlockingQueue

ArrayBlockingQueue.png

BlockingQueue继承了Queue接口,拥有其全部特性。在BlockingQueuejava doc中对其中的操作方法做了汇总

微信截图_20210614132620.png
  • 插入元素
    • add(e):当队列已满时,再添加元素会抛出异常IllegalStateException
    • offer(e):添加成功,返回true,否则返回false
    • put:(e):当队列已满时,再添加元素会使线程变为阻塞状态
    • offer(e, time,unit):当队列已满时,在末尾添加数据,如果在指定时间内没有添加成功,返回false,反之是true
  • 删除元素:
    • remove(e):返回true表示已成功删除,否则返回false
    • poll():如果队列为空返回null,否则返回队列中的第一个元素
    • take():获取队列中的第一个元素,如果队列为空,获取元素的线程变为阻塞状态
    • poll(time, unit):当队列为空时,线程被阻塞,如果超过指定时间,线程退出
  • 检查元素:
    • element():获取队头元素,如果元素为null,抛出NoSuchElementException
    • peek():获取队头元素,如果队列为空返回null,否则返回目标元素

ArrayBlockingQueue

底层基于数组的有界阻塞队列,在构造此队列时必须指定容量;

构造函数

// 第一个  
public ArrayBlockingQueue(int capacity, boolean fair,Collection<? extends E> c) {
        this(capacity, fair);

        final ReentrantLock lock = this.lock;
        lock.lock(); // Lock only for visibility, not mutual exclusion
        try {
            int i = 0;
            try {
                for (E e : c) {
                    checkNotNull(e);
                    items[i++] = e;
                }
            } catch (ArrayIndexOutOfBoundsException ex) {
                throw new IllegalArgumentException();
            }
            count = i;
            putIndex = (i == capacity) ? 0 : i;
        } finally {
            lock.unlock();
        }
    }

    // 第二个
    public ArrayBlockingQueue(int capacity, boolean fair) {
        if (capacity <= 0)
            throw new IllegalArgumentException();
        this.items = new Object[capacity];
        lock = new ReentrantLock(fair);
        notEmpty = lock.newCondition();
        notFull =  lock.newCondition();
    }

    // 第三个
    public ArrayBlockingQueue(int capacity) {
        this(capacity, false);
    }
  • capacity:队列的初始容量
  • fair:线程访问队列的公平性。如果为true按照FIFO的原则处理,反之;默认为false
  • c:已有元素的集合,类型于合并两个数组

put()方法

   public void put(E e) throws InterruptedException {
         // 检查元素是否为null
        checkNotNull(e);
        final ReentrantLock lock = this.lock;
        // 获取锁
        lock.lockInterruptibly();
        try {
            // 如果当前队列为空,变为阻塞状态
            while (count == items.length)
                notFull.await();
            // 反之,就添加元素
            enqueue(e);
        } finally {
            // 解锁
            lock.unlock();
        }
    }

    private void enqueue(E x) {
        final Object[] items = this.items;
        items[putIndex] = x;
        if (++putIndex == items.length)
            putIndex = 0;
        count++;
        // 此时队列不为空,唤醒消费者
        notEmpty.signal();
    }

take()方法

    public E take() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        // 获取锁
        lock.lockInterruptibly();
        try {
            // 如果队列为空,消费者变为阻塞状态
            while (count == 0)
                notEmpty.await();
            // 不为空,就获取数据
            return dequeue();
        } finally {
            // 解锁
            lock.unlock();
        }
    }

        private E dequeue() {
        final Object[] items = this.items;
        @SuppressWarnings("unchecked")
        // 获取队头元素x
        E x = (E) items[takeIndex];
        items[takeIndex] = null;
        if (++takeIndex == items.length)
            takeIndex = 0;
        count--;
        if (itrs != null)
            itrs.elementDequeued();
         // 此时队列没有满,同时生产者继续添加数据
        notFull.signal();
        return x;
    }

LinkedBlockingQueue

底层基于单向链表的无界阻塞队列,如果不指定初始容量,默认为Integer.MAX_VALUE,否则为指定容量

构造函数

    // 不指定容量     
    public LinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }
    // 指定容量
    public LinkedBlockingQueue(int capacity) {
        if (capacity <= 0) throw new IllegalArgumentException();
        this.capacity = capacity;
        last = head = new Node<E>(null);
    }

    // 等同于合并数组
    public LinkedBlockingQueue(Collection<? extends E> c) {
        this(Integer.MAX_VALUE);
        final ReentrantLock putLock = this.putLock;
        putLock.lock(); // Never contended, but necessary for visibility
        try {
            int n = 0;
            for (E e : c) {
                if (e == null)
                    throw new NullPointerException();
                if (n == capacity)
                    throw new IllegalStateException("Queue full");
                enqueue(new Node<E>(e));
                ++n;
            }
            count.set(n);
        } finally {
            putLock.unlock();
        }
    }

put()方法

    public void put(E e) throws InterruptedException {
        // 元素为空,抛出异常
        if (e == null) throw new NullPointerException();
        int c = -1;
        Node<E> node = new Node<E>(e);
        final ReentrantLock putLock = this.putLock;
        // 获取队列中的数据量
        final AtomicInteger count = this.count;
        // 获取锁
        putLock.lockInterruptibly();
        try {
            // 队列满了,变为阻塞状态
            while (count.get() == capacity) {
                notFull.await();
            }
            // 将目标元素添加到链表的尾端
            enqueue(node);
            // 总数增加
            c = count.getAndIncrement();
            // 队列还没有满,继续添加元素
            if (c + 1 < capacity)
                notFull.signal();
        } finally {
            // 解锁
            putLock.unlock();
        }
        if (c == 0)
            signalNotEmpty();
    }

take()方法

    public E take() throws InterruptedException {
        E x;
        int c = -1;
        // 获取队列中的工作数
        final AtomicInteger count = this.count;
        final ReentrantLock takeLock = this.takeLock;
        // 获取锁
        takeLock.lockInterruptibly();
        try {
            // 如果队列为空,变为阻塞状态
            while (count.get() == 0) {
                notEmpty.await();
            }
            // 获取队头元素
            x = dequeue();
            // 递减
            c = count.getAndDecrement();
            // 通知消费者
            if (c > 1)
                notEmpty.signal();
        } finally {
            // 解锁
            takeLock.unlock();
        }
        if (c == capacity)
            // 
            signalNotFull();
        return x;
    }

对比

相同点

  1. 两者都是通过Condition通知生产者和消费者完成元素的添加和获取
  2. 都可以指定容量

不同点

  1. ArrayBlockingQueue基于数据,LinkedBlockingQueue基于链表
  2. ArrayBlockingQueue内有一把锁,LinkedBlockingQueue内有两把锁
    微信截图_20210614170048.png
微信截图_20210614170154.png

自己动手实现一个阻塞队列

通过分析源码可以知道,阻塞队列其实是通过通知机制Condition完成生产者和消费的互通。也可以通过Object类中的wait()notifynotifyAll实现。下面是自己写的一个阻塞队列

public class BlockQueue {
    // 对象锁
    public static final Object LOCK = new Object();
    // 控制变量的值 来通知双方
    public boolean condition;
    
    public void put() {
        synchronized (LOCK) {
            while (condition) {
                try {
                    // 满了
                    System.out.println("put   队列满了,开始阻塞");
                    LOCK.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            condition = true;
            System.out.println("put   改为true,唤醒消费者");
            LOCK.notifyAll();
        }
    }


    public void take() {
        synchronized (LOCK) {
            while (!condition) {
                // 没满
                System.out.println("take   队列没满,开始阻塞");
                try {
                    LOCK.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
            condition = false;
            System.out.println("take   改为false,唤醒生产者");
            LOCK.notifyAll();
        }
    }
}

参考文章:

并发容器之BlockingQueue (juejin.cn)

BlockingQueue (Java Platform SE 8 ) (oracle.com)


阅读原文

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容