为什么选用Binder,在讨论这个问题之前,我们知道Android也是基于Linux内核,Linux现有的进程通信手段有以下几种:
- 管道:在创建时分配一个page大小的内存,缓存区大小比较有限;
- 消息队列:信息复制两次,额外的CPU消耗;不合适频繁或信息量大的通信;
- 共享内存:无须复制,共享缓冲区直接附加到进程虚拟地址空间,速度快;但进程间的同步问题操作系统无法实现,必须各进程利用同步工具解决;
- 套接字:作为更通用的接口,传输效率低,主要用于不同机器或跨网络的通信;
- 信号量:常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。 不适用于信息交换,更适用于进程中断控制,比如非法内存访问,杀死某个进程等;
既然有现有的IPC方式,为什么重新设计一套Binder机制呢。主要是出于以上三个方面的考量:
-
效率:传输效率主要影响因素是内存拷贝的次数,拷贝次数越少,传输速率越高。从Android进程架构角度分析:对于消息队列、Socket和管道来说,数据先从发送方的缓存区拷贝到内核开辟的缓存区中,再从内核缓存区拷贝到接收方的缓存区,一共两次拷贝,如图:
而对于Binder来说,数据从发送方的缓存区拷贝到内核的缓存区,而接收方的缓存区与内核的缓存区是映射到同一块物理地址的,节省了一次数据拷贝的过程,如图:
共享内存不需要拷贝,Binder的性能仅次于共享内存。 - 稳定性:上面说到共享内存的性能优于Binder,那为什么不采用共享内存呢,因为共享内存需要处理并发同步问题,容易出现死锁和资源竞争,稳定性较差。Socket虽然是基于C/S架构的,但是它主要是用于网络间的通信且传输效率较低。Binder基于C/S架构 ,Server端与Client端相对独立,稳定性较好。
- 安全性:传统Linux IPC的接收方无法获得对方进程可靠的UID/PID,从而无法鉴别对方身份;而Binder机制为每个进程分配了UID/PID,且在Binder通信时会根据UID/PID进行有效性检测。
Binder机制的作用和原理
Linux系统将一个进程分为用户空间和内核空间。对于进程之间来说,用户空间的数据不可共享,内核空间的数据可共享,为了保证安全性和独立性,一个进程不能直接操作或者访问另一个进程,即Android的进程是相互独立、隔离的,这就需要跨进程之间的数据通信方式。普通的跨进程通信方式一般需要2次内存拷贝,如下图所示:
一次完整的 Binder IPC 通信过程通常是这样:
- 首先 Binder 驱动在内核空间创建一个数据接收缓存区。
- 接着在内核空间开辟一块内核缓存区,建立内核缓存区和内核中数据接收缓存区之间的映射关系,以及内核中数据接收缓存区和接收进程用户空间地址的映射关系。
- 发送方进程通过系统调用 copyfromuser() 将数据 copy 到内核中的内核缓存区,由于内核缓存区和接收进程的用户空间存在内存映射,因此也就相当于把数据发送到了接收进程的用户空间,这样便完成了一次进程间的通信。
节选自:跨进程通信