有了傅里叶变换,为什么又要来一个拉普拉斯变换?又既然是信号与系统,就要从两个方面加以叙述。
①对信号来说,等幅的正弦信号可以建造一个不增不减的信号或一个减幅的信号,但却不能构造一个增幅的信号,如增长指数函数,这就好像高中生可以做初中生的作业,却很难做大学生的作业一样,因此需要引入拉普拉斯变换,帮我们带来(用)增幅正弦信号构造一般信号这种方式。
②系统方面呢,由于拉普拉斯变换时域微分性质会在复频域中引入初始时刻的状态(一些数值的集合,具体是y(0-),y′(0-)......),从而求出包含零输入响应在内的全响应,而在这方面傅里叶变换只能求出零状态响应。
总是说傅里叶变换是拉普拉斯变换的特例,但我想说的是,正是一条条竖直的傅里叶变换的频率轴构成了一个拉普拉斯的复频域,所以先讲傅里叶再讲拉普拉斯是因为先要讲好每一块积木才能讲积木搭的房子。
果实窃取者,单边拉普拉斯变换
在拉普拉斯变换取得了胜利之后,单边拉普拉斯变换登堂入室,做起了主人,并称自己为正宗的拉普拉斯变换,它的理由是,单边是构成双边的基础,没有单边就没有双边,而他和双边的区别仅是对时间控制。