1、MapPartitions提升Map类操作性能
spark中,最基本的原则就是每个task处理一个RDD的partition。
MapPartitions操作的优点:如果是普通的map,比如一个partition中有1万条数据,那么function要执行和计算1万次;但是使用MapPartitions操作之后,一个task仅仅会执行一个function,function一次接收所有的partition数据,只要执行一次就可以了,性能比较高。
MapPartitions操作的缺点:如果是普通的map操作,一次function的执行就处理一条数据;那么如果内存不够用的情况下,比如处理了1千条数据了,那么这个时候内存不够了,那么就可以将已经处理完的1千条数据从内存里面垃圾回收掉,或者用其他方法,腾出空间来吧。所以说普通的map操作通常不会导致内存的OOM异常。
但是MapPartitions操作,对于大量数据来说,比如甚至一个partition,100万数据,一次传入一个function以后,那么可能一下子内存不够,但是又没有办法去腾出内存空间来,可能就OOM,内存溢出。
MapPartitions操作的使用场景:什么时候比较适合用MapPartitions系列操作,就是说,数据量不是特别大的时候,都可以用这种MapPartitions系列操作,性能还是非常不错的,是有提升的。比如原来是15分钟,(曾经有一次性能调优),12分钟。10分钟->9分钟。
但是也有过出问题的经验,MapPartitions只要一用,直接OOM,内存溢出,崩溃。
在项目中,自己先去估算一下RDD的数据量,以及每个partition的量,还有自己分配给每个executor的内存资源。看看一下子内存容纳所有的partition数据,行不行。如果行,可以试一下,能跑通就好。性能肯定是有提升的。但是试了一下以后,发现,不行,OOM了,那就放弃吧。
2、filter过后使用coalesce减少分区数量
默认情况下,经过了这种filter之后,RDD中的每个partition的数据量,可能都不太一样了。(原本每个partition的数据量可能是差不多的)
存在的问题:
- 1、每个partition数据量变少了,但是在后面进行处理的时候,还是要跟partition数量一样数量的task,来进行处理;有点浪费task计算资源;
- 2、每个partition的数据量不一样,会导致后面的每个task处理每个partition的时候,每个task要处理的数据量就不同,这个时候很容易发生数据倾斜;
比如说,第二个partition的数据量才100;但是第三个partition的数据量是900;那么在后面的task处理逻辑一样的情况下,不同的task要处理的数据量可能差别达到了9倍,甚至10倍以上;同样也就导致了速度的差别在9倍,甚至10倍以上。这样的话呢,就会导致有些task运行的速度很快;有些task运行的速度很慢。
解决方法:
1、针对第一个问题,我们希望可以进行partition的压缩,因为数据量变少了,那么partition其实也完全可以对应的变少。比如原来是4个partition,现在完全可以变成2个partition。那么就只要用后面的2个task来处理即可,就不会造成task计算资源的浪费。(没必要针对只有一点点数据的partition,还去启动一个task来计算)
2、针对第二个问题,其实解决方案跟第一个问题是一样的;也是去压缩partition,尽量让每个partition的数据量差不多。那么这样的话,后面的task分配到的partition的数据量也就差不多。不会造成有的task运行速度特别慢,有的task运行速度特别快。避免了数据倾斜的问题。
3、实现:coalesec算子
主要就是用于在filter操作之后,针对每个partition的数据量各不相同的情况,来压缩partition的数量。减少partition的数量,而且让每个partition的数据量都尽量均匀紧凑。
从而便于后面的task进行计算操作,在某种程度上,能够一定程度的提升性能。
3、使用foreachPartition优化写数据库性能
默认的foreach的性能缺陷:
首先,对于每条数据,都要单独去调用一次function,task为每个数据,都要去执行一次function函数。如果100万条数据,(一个partition),调用100万次。性能比较差。
另外一个非常非常重要的一点,如果每个数据,你都去创建一个数据库连接的话,那么你就得创建100万次数据库连接。数据库连接的创建和销毁,都是非常非常消耗性能的。虽然我们之前已经用了数据库连接池,只是创建了固定数量的数据库连接。
你还是得多次通过数据库连接,往数据库(MySQL)发送一条SQL语句,然后MySQL需要去执行这条SQL语句。如果有100万条数据,那么就是100万次发送SQL语句。
以上两点(数据库连接,多次发送SQL语句),都是非常消耗性能的。
foreachPartition算子的好处:
- 1、对于我们写的function函数,就调用一次,一次传入一个partition所有的数据;
- 2、主要创建或者获取一个数据库连接就可以;
- 3、只要向数据库发送一次SQL语句和多组参数即可
在实际生产环境中,清一色,都是使用foreachPartition操作;但是有个问题,跟mapPartitions操作一样,如果一个partition的数量真的特别特别大,比如真的是100万,那基本上就不太靠谱了。
一下子进来,很有可能会发生OOM,内存溢出的问题。
之前在生产环境中,一个partition大概是1千条左右,用foreach,跟用foreachPartition,性能的提升达到了2~3分钟。
4、使用repartition解决Spark SQL低并行度的性能问题
并行度是可以自定义设置的,但是如果使用了Spark SQL,那stage的并行度没法指定;Spark SQL自己会默认根据hive表对应的hdfs文件的block,自动设置Spark SQL查询所在的那个stage的并行度。自己通过spark.default.parallelism参数指定的并行度,只会在没有Spark SQL的stage中生效。
比如你第一个stage,用了Spark SQL从hive表中查询出了一些数据,然后做了一些transformation操作,接着做了一个shuffle操作(groupByKey);下一个stage,在shuffle操作之后,做了一些transformation操作。hive表,对应了一个hdfs文件,有20个block;你自己设置了spark.default.parallelism参数为100。
你的第一个stage的并行度,是不受你的控制的,就只有20个task;第二个stage,才会变成你自己设置的那个并行度,100。
Spark SQL默认情况下,它的那个并行度,咱们没法设置。可能导致的问题,也许没什么问题,也许很有问题。Spark SQL所在的那个stage中,后面的那些transformation操作,可能会有非常复杂的业务逻辑,甚至说复杂的算法。如果你的Spark SQL默认把task数量设置的很少,20个,然后每个task要处理为数不少的数据量,然后还要执行特别复杂的算法。
这个时候,就会导致第一个stage的速度,特别慢。第二个stage,1000个task,刷刷刷,非常快。
解决方法:repartition算子
你在Spark SQL这一步的并行度和task数量,肯定是没有办法去改变了。但是呢,可以将你用Spark SQL查询出来的RDD,使用repartition算子,去重新进行分区,此时可以分区成多个partition,比如从20个partition,分区成100个。然后呢,从repartition以后的RDD,再往后,并行度和task数量,就会按照你预期的来了。就可以避免跟Spark SQL绑定在一个stage中的算子,只能使用少量的task去处理大量数据以及复杂的算法逻辑。
5、reduceByKey本地聚合
reduceByKey,相较于普通的shuffle操作(比如groupByKey)操作,它的一个特点,就是会进行map端的本地聚合;
对map端给下个stage每个task创建的输出文件中,写数据之前,就会进行本地的combiner操作,也就是说每一个key,对应的values,都会执行你的算子函数
用reduceByKey对性能的提升:
- 1、在本地进行聚合以后,在map端的数据量就变少了,减少磁盘IO。而且可以减少磁盘空间的占用。
- 2、下一个stage,拉取数据的量,也就变少了。减少网络的数据传输的性能消耗。
- 3、在map端进行数据缓存的内存占用变少了。
- 4、在reduce端,要进行聚合的数据量也变少了。
reduceByKey使用场景:
1、非常普通的,比如说,就是要实现类似于wordcount程序一样的,对每个key对应的值,进行某种数据公式或者算法的计算(累加、类乘)
2、对于一些类似于要对每个key进行一些字符串拼接的这种较为复杂的操作,可以自己衡量一下,其实有时,也是可以使用reduceByKey来实现的。但是不太好实现。如果真能够实现出来,对性能绝对是有帮助的。(shuffle基本上就占了整个spark作业的90%以上的性能消耗,只要能对shuffle进行一定的调优,都是有价值的)