二叉查找树

一、定义

二叉查找树(Binary Search Tree),也称二叉搜索树,是一棵二叉树,其中每个结点都含有一个Comparable的键(以及相关联的值)且每个结点的键都大于其左子树中的任意结点的键而小于右子树的任意结点的键

1-1 二叉查找树示意图

BST的数据结构定义:

public class BST<Key extends Comparable<Key>, Value> {
    private Node root;             // root of BST
    private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated data
        private Node left, right;  // left and right subtrees
        private int size;          // number of nodes in subtree
 
        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }
    public BST() {
    }
}

BST的特点:
如果将一棵二叉查找树的所有键投影到一条直线上,保证一个结点的左子树中的键出现在它的左边,右子树中的键出现在它的右边,那么我们一定可以得到一条有序的键列。

BST的遍历:
以根节点为参照,根据根节点的访问前后顺序,定义了3种遍历方式:

  • 先序遍历:根节点->左子树->右子树
  • 中序遍历:左子树->根节点->右子树
  • 后序遍历:左子树->右子树->根结点

二、实现

2.1 查找

在一棵二叉查找树中查找一个键的步骤如下:

  1. 如果树是空,则查找未命中;
  2. 如果被查找的键和根节点的键相等,查找命中。否则,递归地在适当的子树中继续查找:
    ①如果被查找的键小于当前根节点,则选择左子树递归;
    ②如果被查找的键大于当前根节点,则选择右子树递归。
2-1 查找示例(左侧命中,右侧未命中)

查找-源码实现:

/**
 * Returns the value associated with the given key.
 */
public Value get(Key key) {
    return get(root, key);
}
 
/**
 * 从指定根节点x开始查找key
 */
private Value get(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key);
    if      (cmp < 0) return get(x.left, key);
    else if (cmp > 0) return get(x.right, key);
    else              return x.val;
}

2.2 插入

在一棵二叉查找树中插入一个结点的步骤和查找步骤类似,当查找一个不存在树中的结点并结束于一条空链接时(说明找到了待插入的位置),我们需要做的就是将链接指向一个含有被查找的键的新结点。
步骤如下:

  1. 如果树是空,则返回一个含有该键值对的新结点;
  2. 如果被查找的键和根节点的键相等,则查找命中,更新结点值。否则,递归地在适当的子树中继续查找:
    ①如果被查找的键小于当前根节点,则选择左子树递归,更新左子树的结点数;
    ②如果被查找的键大于当前根节点,则选择右子树递归,更新右子树的结点数。

2-2 插入示例

插入-源码实现:

public void put(Key key, Value val) {
    if (key == null)
        throw new IllegalArgumentException("calls put() with a null key");
    root = put(root, key, val);
}

/**
 * 向根结点为x的二叉查找树中插入一个结点,并更新结点数
 * @return 返新树的根节点
 */
private Node put(Node x, Key key, Value val) {
    if (x == null)
        return new Node(key, val, 1);
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = put(x.left, key, val);
    else if (cmp > 0)
        x.right = put(x.right, key, val);
    else
        x.val = val;
    x.size = 1 + size(x.left) + size(x.right);
    return x;
}

2.3 删除最小结点

二叉查找树的最小结点要么在左子树中,要么就是根结点。
所以,如果左子树不为空,就继续在左子树中查找并删除最小结点;如果左子树为空,则首先将当前根节点指向右结点(相当于删除了根节点)。

2-3 删除最小结点

删除最小结点-源码实现:

/**
 * 删除二叉查找树中的最小结点.
 */
public void deleteMin() {
    if (isEmpty())
        throw new NoSuchElementException("Symbol table underflow");
    root = deleteMin(root);
}
 
/**
 * 删除当前根节点为x的树的最小结点
 * @return 返回新树的根节点
 */
private Node deleteMin(Node x) {
    if (x.left == null)
        return x.right;
    x.left = deleteMin(x.left);
    x.size = size(x.left) + size(x.right) + 1;
    return x;
}

2.4 删除任意结点

当被删除的结点只有左子树或右子树时,可以采用类似删除最小结点的方式处理。但是,当被删除的结点有左右子树时,需要用它的后继结点填补该结点。
所谓后继结点,就是被删除结点的右子树中的最小结点。

具体步骤:

  1. 将指向被删除的结点的链接保存为t;
  2. 将x指向t的右子树的最小结点min(t.right)
  3. 将x的右链接指向deleteMin(t.right)
  4. 将x的左链接(原本为空)指向t.left
  5. 返回新树的根节点(x)
2-4 删除任意结点

删除任意结点-源码实现:

/**
 * 根据键值删除结点
 */
public void delete(Key key) {
    if (key == null)
        throw new IllegalArgumentException("calls delete() with a null key");
    root = delete(root, key);
}
 
/**
 * 删除当前根节点为x的树的指定结点
 * @return 返回新树的根节点
 */
private Node delete(Node x, Key key) {
    if (x == null)
        return null;
 
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        x.left = delete(x.left, key);
    else if (cmp > 0)
        x.right = delete(x.right, key);
    else {
        if (x.right == null)
            return x.left;
        if (x.left == null)
            return x.right;
        Node t = x;
        x = min(t.right);
        x.right = deleteMin(t.right);
        x.left = t.left;
    }
    x.size = size(x.left) + size(x.right) + 1;
    return x;
}

2.5 完整实现

用例轨迹:

2-5 完整用例轨迹

完整源码:

public class BST<Key extends Comparable<Key>, Value> {
    private Node root; // root of BST

    private class Node {
        private Key key; // sorted by key
        private Value val; // associated data
        private Node left, right; // left and right subtrees
        private int size; // number of nodes in subtree

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }

    /**
     * Initializes an empty symbol table.
     */
    public BST() {
    }

    /**
     * Returns true if this symbol table is empty.
     * 
     * @return {@code true} if this symbol table is empty; {@code false}
     *         otherwise
     */
    public boolean isEmpty() {
        return size() == 0;
    }

    /**
     * Returns the number of key-value pairs in this symbol table.
     * 
     * @return the number of key-value pairs in this symbol table
     */
    public int size() {
        return size(root);
    }

    // return number of key-value pairs in BST rooted at x
    private int size(Node x) {
        if (x == null)
            return 0;
        else
            return x.size;
    }

    /**
     * Does this symbol table contain the given key?
     *
     * @param key
     *            the key
     * @return {@code true} if this symbol table contains {@code key} and
     *         {@code false} otherwise
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public boolean contains(Key key) {
        if (key == null)
            throw new IllegalArgumentException("argument to contains() is null");
        return get(key) != null;
    }

    /**
     * Returns the value associated with the given key.
     *
     * @param key
     *            the key
     * @return the value associated with the given key if the key is in the
     *         symbol table and {@code null} if the key is not in the symbol
     *         table
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public Value get(Key key) {
        return get(root, key);
    }

    private Value get(Node x, Key key) {
        if (key == null)
            throw new IllegalArgumentException("calls get() with a null key");
        if (x == null)
            return null;
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            return get(x.left, key);
        else if (cmp > 0)
            return get(x.right, key);
        else
            return x.val;
    }

    /**
     * Inserts the specified key-value pair into the symbol table, overwriting
     * the old value with the new value if the symbol table already contains the
     * specified key. Deletes the specified key (and its associated value) from
     * this symbol table if the specified value is {@code null}.
     *
     * @param key
     *            the key
     * @param val
     *            the value
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public void put(Key key, Value val) {
        if (key == null)
            throw new IllegalArgumentException("calls put() with a null key");
        if (val == null) {
            delete(key);
            return;
        }
        root = put(root, key, val);
        assert check();
    }

    private Node put(Node x, Key key, Value val) {
        if (x == null)
            return new Node(key, val, 1);
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left = put(x.left, key, val);
        else if (cmp > 0)
            x.right = put(x.right, key, val);
        else
            x.val = val;
        x.size = 1 + size(x.left) + size(x.right);
        return x;
    }

    /**
     * Removes the smallest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException
     *             if the symbol table is empty
     */
    public void deleteMin() {
        if (isEmpty())
            throw new NoSuchElementException("Symbol table underflow");
        root = deleteMin(root);
        assert check();
    }

    private Node deleteMin(Node x) {
        if (x.left == null)
            return x.right;
        x.left = deleteMin(x.left);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Removes the largest key and associated value from the symbol table.
     *
     * @throws NoSuchElementException
     *             if the symbol table is empty
     */
    public void deleteMax() {
        if (isEmpty())
            throw new NoSuchElementException("Symbol table underflow");
        root = deleteMax(root);
        assert check();
    }

    private Node deleteMax(Node x) {
        if (x.right == null)
            return x.left;
        x.right = deleteMax(x.right);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Removes the specified key and its associated value from this symbol table
     * (if the key is in this symbol table).
     *
     * @param key
     *            the key
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public void delete(Key key) {
        if (key == null)
            throw new IllegalArgumentException("calls delete() with a null key");
        root = delete(root, key);
        assert check();
    }

    private Node delete(Node x, Key key) {
        if (x == null)
            return null;

        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left = delete(x.left, key);
        else if (cmp > 0)
            x.right = delete(x.right, key);
        else {
            if (x.right == null)
                return x.left;
            if (x.left == null)
                return x.right;
            Node t = x;
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        }
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

    /**
     * Returns the smallest key in the symbol table.
     *
     * @return the smallest key in the symbol table
     * @throws NoSuchElementException
     *             if the symbol table is empty
     */
    public Key min() {
        if (isEmpty())
            throw new NoSuchElementException("calls min() with empty symbol table");
        return min(root).key;
    }

    private Node min(Node x) {
        if (x.left == null)
            return x;
        else
            return min(x.left);
    }

    /**
     * Returns the largest key in the symbol table.
     *
     * @return the largest key in the symbol table
     * @throws NoSuchElementException
     *             if the symbol table is empty
     */
    public Key max() {
        if (isEmpty())
            throw new NoSuchElementException("calls max() with empty symbol table");
        return max(root).key;
    }

    private Node max(Node x) {
        if (x.right == null)
            return x;
        else
            return max(x.right);
    }

    /**
     * Returns the largest key in the symbol table less than or equal to
     * {@code key}.
     *
     * @param key
     *            the key
     * @return the largest key in the symbol table less than or equal to
     *         {@code key}
     * @throws NoSuchElementException
     *             if there is no such key
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public Key floor(Key key) {
        if (key == null)
            throw new IllegalArgumentException("argument to floor() is null");
        if (isEmpty())
            throw new NoSuchElementException("calls floor() with empty symbol table");
        Node x = floor(root, key);
        if (x == null)
            return null;
        else
            return x.key;
    }

    private Node floor(Node x, Key key) {
        if (x == null)
            return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0)
            return x;
        if (cmp < 0)
            return floor(x.left, key);
        Node t = floor(x.right, key);
        if (t != null)
            return t;
        else
            return x;
    }

    public Key floor2(Key key) {
        return floor2(root, key, null);
    }

    private Key floor2(Node x, Key key, Key best) {
        if (x == null)
            return best;
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            return floor2(x.left, key, best);
        else if (cmp > 0)
            return floor2(x.right, key, x.key);
        else
            return x.key;
    }

    /**
     * Returns the smallest key in the symbol table greater than or equal to
     * {@code key}.
     *
     * @param key
     *            the key
     * @return the smallest key in the symbol table greater than or equal to
     *         {@code key}
     * @throws NoSuchElementException
     *             if there is no such key
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public Key ceiling(Key key) {
        if (key == null)
            throw new IllegalArgumentException("argument to ceiling() is null");
        if (isEmpty())
            throw new NoSuchElementException("calls ceiling() with empty symbol table");
        Node x = ceiling(root, key);
        if (x == null)
            return null;
        else
            return x.key;
    }

    private Node ceiling(Node x, Key key) {
        if (x == null)
            return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0)
            return x;
        if (cmp < 0) {
            Node t = ceiling(x.left, key);
            if (t != null)
                return t;
            else
                return x;
        }
        return ceiling(x.right, key);
    }

    /**
     * Return the key in the symbol table whose rank is {@code k}. This is the
     * (k+1)st smallest key in the symbol table.
     *
     * @param k
     *            the order statistic
     * @return the key in the symbol table of rank {@code k}
     * @throws IllegalArgumentException
     *             unless {@code k} is between 0 and <em>n</em>鈥�1
     */
    public Key select(int k) {
        if (k < 0 || k >= size()) {
            throw new IllegalArgumentException("argument to select() is invalid: " + k);
        }
        Node x = select(root, k);
        return x.key;
    }

    // Return key of rank k.
    private Node select(Node x, int k) {
        if (x == null)
            return null;
        int t = size(x.left);
        if (t > k)
            return select(x.left, k);
        else if (t < k)
            return select(x.right, k - t - 1);
        else
            return x;
    }

    /**
     * Return the number of keys in the symbol table strictly less than
     * {@code key}.
     *
     * @param key
     *            the key
     * @return the number of keys in the symbol table strictly less than
     *         {@code key}
     * @throws IllegalArgumentException
     *             if {@code key} is {@code null}
     */
    public int rank(Key key) {
        if (key == null)
            throw new IllegalArgumentException("argument to rank() is null");
        return rank(key, root);
    }

    // Number of keys in the subtree less than key.
    private int rank(Key key, Node x) {
        if (x == null)
            return 0;
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            return rank(key, x.left);
        else if (cmp > 0)
            return 1 + size(x.left) + rank(key, x.right);
        else
            return size(x.left);
    }

    /**
     * Returns all keys in the symbol table as an {@code Iterable}. To iterate
     * over all of the keys in the symbol table named {@code st}, use the
     * foreach notation: {@code for (Key key : st.keys())}.
     *
     * @return all keys in the symbol table
     */
    public Iterable<Key> keys() {
        if (isEmpty())
            return new Queue<Key>();
        return keys(min(), max());
    }

    /**
     * Returns all keys in the symbol table in the given range, as an
     * {@code Iterable}.
     *
     * @param lo
     *            minimum endpoint
     * @param hi
     *            maximum endpoint
     * @return all keys in the symbol table between {@code lo} (inclusive) and
     *         {@code hi} (inclusive)
     * @throws IllegalArgumentException
     *             if either {@code lo} or {@code hi} is {@code null}
     */
    public Iterable<Key> keys(Key lo, Key hi) {
        if (lo == null)
            throw new IllegalArgumentException("first argument to keys() is null");
        if (hi == null)
            throw new IllegalArgumentException("second argument to keys() is null");

        Queue<Key> queue = new Queue<Key>();
        keys(root, queue, lo, hi);
        return queue;
    }

    private void keys(Node x, Queue<Key> queue, Key lo, Key hi) {
        if (x == null)
            return;
        int cmplo = lo.compareTo(x.key);
        int cmphi = hi.compareTo(x.key);
        if (cmplo < 0)
            keys(x.left, queue, lo, hi);
        if (cmplo <= 0 && cmphi >= 0)
            queue.enqueue(x.key);
        if (cmphi > 0)
            keys(x.right, queue, lo, hi);
    }

    /**
     * Returns the number of keys in the symbol table in the given range.
     *
     * @param lo
     *            minimum endpoint
     * @param hi
     *            maximum endpoint
     * @return the number of keys in the symbol table between {@code lo}
     *         (inclusive) and {@code hi} (inclusive)
     * @throws IllegalArgumentException
     *             if either {@code lo} or {@code hi} is {@code null}
     */
    public int size(Key lo, Key hi) {
        if (lo == null)
            throw new IllegalArgumentException("first argument to size() is null");
        if (hi == null)
            throw new IllegalArgumentException("second argument to size() is null");

        if (lo.compareTo(hi) > 0)
            return 0;
        if (contains(hi))
            return rank(hi) - rank(lo) + 1;
        else
            return rank(hi) - rank(lo);
    }

    /**
     * Returns the height of the BST (for debugging).
     *
     * @return the height of the BST (a 1-node tree has height 0)
     */
    public int height() {
        return height(root);
    }

    private int height(Node x) {
        if (x == null)
            return -1;
        return 1 + Math.max(height(x.left), height(x.right));
    }

    /**
     * Returns the keys in the BST in level order (for debugging).
     *
     * @return the keys in the BST in level order traversal
     */
    public Iterable<Key> levelOrder() {
        Queue<Key> keys = new Queue<Key>();
        Queue<Node> queue = new Queue<Node>();
        queue.enqueue(root);
        while (!queue.isEmpty()) {
            Node x = queue.dequeue();
            if (x == null)
                continue;
            keys.enqueue(x.key);
            queue.enqueue(x.left);
            queue.enqueue(x.right);
        }
        return keys;
    }

    /*************************************************************************
     * Check integrity of BST data structure.
     ***************************************************************************/
    private boolean check() {
        if (!isBST())
            StdOut.println("Not in symmetric order");
        if (!isSizeConsistent())
            StdOut.println("Subtree counts not consistent");
        if (!isRankConsistent())
            StdOut.println("Ranks not consistent");
        return isBST() && isSizeConsistent() && isRankConsistent();
    }

    // does this binary tree satisfy symmetric order?
    // Note: this test also ensures that data structure is a binary tree since
    // order is strict
    private boolean isBST() {
        return isBST(root, null, null);
    }

    // is the tree rooted at x a BST with all keys strictly between min and max
    // (if min or max is null, treat as empty constraint)
    // Credit: Bob Dondero's elegant solution
    private boolean isBST(Node x, Key min, Key max) {
        if (x == null)
            return true;
        if (min != null && x.key.compareTo(min) <= 0)
            return false;
        if (max != null && x.key.compareTo(max) >= 0)
            return false;
        return isBST(x.left, min, x.key) && isBST(x.right, x.key, max);
    }

    // are the size fields correct?
    private boolean isSizeConsistent() {
        return isSizeConsistent(root);
    }

    private boolean isSizeConsistent(Node x) {
        if (x == null)
            return true;
        if (x.size != size(x.left) + size(x.right) + 1)
            return false;
        return isSizeConsistent(x.left) && isSizeConsistent(x.right);
    }

    // check that ranks are consistent
    private boolean isRankConsistent() {
        for (int i = 0; i < size(); i++)
            if (i != rank(select(i)))
                return false;
        for (Key key : keys())
            if (key.compareTo(select(rank(key))) != 0)
                return false;
        return true;
    }

    /**
     * Unit tests the {@code BST} data type.
     *
     * @param args
     *            the command-line arguments
     */
    public static void main(String[] args) {
        BST<String, Integer> st = new BST<String, Integer>();
        for (int i = 0; !StdIn.isEmpty(); i++) {
            String key = StdIn.readString();
            st.put(key, i);
        }

        for (String s : st.levelOrder())
            StdOut.println(s + " " + st.get(s));

        StdOut.println();

        for (String s : st.keys())
            StdOut.println(s + " " + st.get(s));
    }
}

三、性能分析

二叉查找树的性能取决于树的形状,而树的形状又取决于键被插入的先后顺序
也就是说二叉查找树要具有良好性能,则其中键的分布必须足够随机以消除长路径。

  • 最好情况
    N个结点的二叉树是完全平衡的(完全二叉树),每个空链接和根结点的距离~lgN
    插入/查找时间复杂度:O(lgN)
  • 最坏情况
    N个结点的二叉树如下图,搜索路径上有N个结点,形成完全线程结构。
    插入/查找时间复杂度:O(N)
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容