OpenGL ES2.0 c++ 基础
什么是OpenGL ES?OpenGL ES (为OpenGL for Embedded System的缩写) 为适用于嵌入式系统的一个免费二维和三维图形库。为桌面版本OpenGL 的一个子集。OpenGL ES 定义了一个在移动平台上能够支持
hello world 开始吧
首先环境搭建引入必要库。Linux windows ios android 嵌入式设备 自己的目标设备支持什么库。
基本库
- EGL
- openGL ES2.0
以下例子程序均基于Linux平台。
1. 保存全局变量的数据结构
ESContext
typedef struct _escontext
{
void* userData; // Put your user data here...
GLint width; // Window width
GLint height; // Window height
EGLNativeWindowType hWnd; // Window handle
EGLDisplay eglDisplay; // EGL display
EGLContext eglContext; // EGL context
EGLSurface eglSurface; // EGL surface
// Callbacks
void (ESCALLBACK *drawFunc) ( struct _escontext * );
void (ESCALLBACK *keyFunc) ( struct _escontext *, unsigned char, int, int );
void (ESCALLBACK *updateFunc) ( struct _escontext *, float deltaTime );
}ESContext;
UserData
typedef struct
{
// Handle to a program object
GLuint programObject;
// Atrribute Location
GLint positionLoc;
GLint textureLoc;
// Uniform location
GLint matrixModeLoc;
GLint matrixViewLoc;
GLint matrixPerspectiveLoc;
// Sampler location
GLint samplerLoc;
// texture
GLuint texture;
} UserData;
2. 初始化EGL渲染环境和相关元素(第一步)
- 获取 EGL Display 对象:eglGetDisplay()
- 初始化与 EGLDisplay 之间的连接:eglInitialize()
- 获取 EGLConfig 全部列表对象 :eglGetConfigs()
- 获取 EGLConfig 选择EGL对象:eglChooseConfig()
- 创建 EGLContext 实例:eglCreateContext()
- 创建 EGLSurface 实例:eglCreateWindowSurface()
- 设置当前渲染API : eglBindAPI();
- EGL_OPENGL_API
- EGL_OPENGL_ES_API
- EGL_OPENVG_API
- 连接 EGLContext 和 EGLSurface:eglMakeCurrent()
int InitEGL(ESContext * esContext)
{
NativeWindowType eglWindow = NULL;
EGLDisplay display;
EGLContext context;
EGLSurface surface;
EGLConfig configs[2];
EGLBoolean eRetStatus;
EGLint majorVer, minorVer;
EGLint context_attribs[] = {EGL_CONTEXT_CLIENT_VERSION, 2, EGL_NONE};
EGLint numConfigs;
EGLint cfg_attribs[] = {EGL_BUFFER_SIZE, EGL_DONT_CARE,
EGL_DEPTH_SIZE, 16,
EGL_RED_SIZE, 5,
EGL_GREEN_SIZE, 6,
EGL_BLUE_SIZE, 5,
EGL_RENDERABLE_TYPE, EGL_OPENGL_ES2_BIT,
EGL_NONE};
//my function
eglWindow = my_getEglNativeWindowType();
// Get default display connection
display = eglGetDisplay((EGLNativeDisplayType)EGL_DEFAULT_DISPLAY);
if ( display == EGL_NO_DISPLAY )
{
return EGL_FALSE;
}
// Initialize EGL display connection
eRetStatus = eglInitialize(display, &majorVer, &minorVer);
if( eRetStatus != EGL_TRUE )
{
return EGL_FALSE;
}
//Get a list of all EGL frame buffer configurations for a display
eRetStatus = eglGetConfigs (display, configs, 2, &numConfigs);
if( eRetStatus != EGL_TRUE )
{
return EGL_FALSE;
}
// Get a list of EGL frame buffer configurations that match specified attributes
eRetStatus = eglChooseConfig (display, cfg_attribs, configs, 2, &numConfigs);
if( eRetStatus != EGL_TRUE || !numConfigs)
{
return EGL_FALSE;
}
// Create a new EGL window surface
surface = eglCreateWindowSurface(display, configs[0], eglWindow, NULL);
if (surface == EGL_NO_SURFACE)
{
return EGL_FALSE;
}
// Set the current rendering API (EGL_OPENGL_API, EGL_OPENGL_ES_API,EGL_OPENVG_API)
eRetStatus = eglBindAPI(EGL_OPENGL_ES_API);
if (eRetStatus != EGL_TRUE)
{
return EGL_FALSE;
}
// Create a new EGL rendering context
context = eglCreateContext (display, configs[0], EGL_NO_CONTEXT, context_attribs);
if (context == EGL_NO_CONTEXT)
{
return EGL_FALSE;
}
// Attach an EGL rendering context to EGL surfaces
eRetStatus = eglMakeCurrent (display, surface, surface, context);
if( eRetStatus != EGL_TRUE )
{
return EGL_FALSE;
}
//If interval is set to a value of 0, buffer swaps are not synchronized to a video frame, and the swap happens as soon as the render is complete.
eglSwapInterval(display,0);
// Return the context elements
esContext->eglWindow = eglWindow;
esContext->eglDisplay = display;
esContext->eglSurface = surface;
esContext->eglContext = context;
return EGL_TRUE;
}
获取 my_getEglNativeWindowType();
- NativeDisplayType 平台显示数据类型,标识你所开发设备的物理屏幕
- NativeWindowType 平台窗口数据类型,标识系统窗口
下面的代码是一个 NativeWindowType 获取的例子。这只是一个例子,不同平台之间的实现千差万别。使用 native 类型的关键作用在于为开发者抽象化这些细节。
NativeWindowType getEglNativeWindowType(){
NativeDisplayType EGL_display = fbGetDisplayByIndex(0);
NativeDisplayType window;
unsigned lond physical;
int width, height, stride, bitsPerPixel;
fbgetDisplayInfo(egl_display, &width, &height, &physical, &stride, &bitsPerPixel);
window = fbCreateWindow(egl_display, 0, 0, width, height);
assert(window);
return window;
}
3. 生成Program (第二步)
3.1 LoadShader
实现shader的编译
LoadShader主要实现以下功能:
- 创建Shader对象
- 装载Shader源码
- 编译Shader
/* type specifies the Shader type: GL_VERTEX_SHADER or GL_FRAGMENT_SHADER */
GLuint LoadShader ( GLenum type, const char *shaderSrc )
{
GLuint shader;
GLint compiled;
// Create an empty shader object, which maintain the source code strings that define a shader
shader = glCreateShader ( type );
if ( shader == 0 )
return 0;
// Replaces the source code in a shader object
glShaderSource ( shader, 1, &shaderSrc, NULL );
// Compile the shader object
glCompileShader ( shader );
// Check the shader object compile status
glGetShaderiv ( shader, GL_COMPILE_STATUS, &compiled );
if ( !compiled )
{
GLint infoLen = 0;
glGetShaderiv ( shader, GL_INFO_LOG_LENGTH, &infoLen );
if ( infoLen > 1 )
{
char* infoLog = malloc (sizeof(char) * infoLen );
glGetShaderInfoLog ( shader, infoLen, NULL, infoLog );
esLogMessage ( "Error compiling shader:\n%s\n", infoLog );
free ( infoLog );
}
glDeleteShader ( shader );
return 0;
}
return shader;
}
3.1.1. 创建Shader对象 :glCreateShader()
它创建一个空的shader对象,它用于维护用来定义shader的源码字符串。支持以下两种
- GL_VERTEX_SHADER:它运行在可编程的“顶点处理器”上,用于代替固定功能的顶点处理
- GL_FRAGMENT_SHADER:它运行在可编程的“片断处理器”上,用于代替固定功能的片段处理
3.1.2. 装载Shader源码:glShaderSource()
shader对象中原来的源码全部被新的源码所代替。
3.1.3. 编译Shader:glCompileShader()
编译存储在shader对象中的源码字符串,编译结果被当作shader对象状态的一部分被保存起来,可通过glGetShaderiv函数获取编译状态。
3.1.4. 获取shader对象参数:glGetShaderiv()
获取shader对象参数,参数包括:GL_SHADER_TYPE, GL_DELETE_STATUS, GL_COMPILE_STATUS, GL_INFO_LOG_LENGTH, GL_SHADER_SOURCE_LENGTH.
3.2 LoadProgram
实现了Program的链接
GLuint LoadProgram ( const char *vShaderStr, const char *fShaderStr )
{
GLuint vertexShader;
GLuint fragmentShader;
GLuint programObject;
GLint linked;
// Load the vertex/fragment shaders
vertexShader = LoadShader ( GL_VERTEX_SHADER, vShaderStr );
fragmentShader = LoadShader ( GL_FRAGMENT_SHADER, fShaderStr );
// Create the program object
programObject = glCreateProgram ( );
if ( programObject == 0 )
return 0;
// Attaches a shader object to a program object
glAttachShader ( programObject, vertexShader );
glAttachShader ( programObject, fragmentShader );
// Bind vPosition to attribute 0
glBindAttribLocation ( programObject, 0, "vPosition" );
// Link the program object
glLinkProgram ( programObject );
// Check the link status
glGetProgramiv ( programObject, GL_LINK_STATUS, &linked );
if ( !linked )
{
GLint infoLen = 0;
glGetProgramiv ( programObject, GL_INFO_LOG_LENGTH, &infoLen );
if ( infoLen > 1 )
{
char* infoLog = malloc (sizeof(char) * infoLen );
glGetProgramInfoLog ( programObject, infoLen, NULL, infoLog );
esLogMessage ( "Error linking program:\n%s\n", infoLog );
free ( infoLog );
}
glDeleteProgram ( programObject );
return GL_FALSE;
}
// Free no longer needed shader resources
glDeleteShader ( vertexShader );
glDeleteShader ( fragmentShader );
return programObject;
}
3.2.1 创建Program对象 :glCreateProgram()
建立一个空的program对象,shader对象可以被连接到program对像
3.2.2 glAttachShader
program对象提供了把需要做的事连接在一起的机制。在一个program中,在shader对象被连接在一起之前,必须先把shader连接到program上。
3.2.3 glBindAttribLocation
把program的顶点属性索引与顶点shader中的变量名进行绑定。
3.2.4 glLinkProgram
连接程序对象。如果任何类型为GL_VERTEX_SHADER的shader对象连接到program,它将产生在“可编程顶点处理器
”上可执行的程 序;如果任何类型为GL_FRAGMENT_SHADER的shader对象连接到program,它将
产生在“可编程片断处理器
”上可执行的程序。
3.2.5 glGetProgramiv
获取program对象的参数值,参数有:GL_DELETE_STATUS, GL_LINK_STATUS, GL_VALIDATE_STATUS, GL_INFO_LOG_LENGTH, GL_ATTACHED_SHADERS, GL_ACTIVE_ATTRIBUTES, GL_ACTIVE_ATTRIBUTE_MAX_LENGTH,
GL_ACTIVE_UNIFORMS, GL_ACTIVE_UNIFORM_MAX_LENGTH.
3.3 CreateProgram
实现了Program的源码
加载
在3.1中只实现了Shader的编译,在3.2中只实现了Program的链接,现在还缺少真正供进行编译和链接
的源码
int CreateProgram(ESContext * esContext)
{
GLuint programObject;
GLbyte vShaderStr[] =
"attribute vec4 vPosition;"
"void main()"
"{"
" gl_Position = vPosition;"
"}";
GLbyte fShaderStr[] =
"precision mediump float;"
"void main()"
"{"
" gl_FragColor = vec4 ( 1.0, 0.0, 0.0, 1.0 );"
"}";
// Create user data
esContext->userData = malloc(sizeof(UserData));
UserData *userData = esContext->userData;
// Load the shaders and get a linked program object
programObject = LoadProgram ( (const char*)vShaderStr, (const char*)fShaderStr );
if(programObject == 0)
{
return GL_FALSE;
}
// Store the program object
userData->programObject = programObject;
// Get the attribute locations
userData->positionLoc = glGetAttribLocation ( g_programObject, "v_position" );
glClearColor ( 0.0f, 0.0f, 0.0f, 1.0f );
return ELG_TRUE;
}
4. 安装并执行Program(第三步)
void Render ( ESContext *esContext )
{
UserData *userData = esContext->userData;
GLfloat vVertices[] = { 0.0f, 0.5f, 0.0f,
-0.5f, -0.5f, 0.0f,
0.5f, -0.5f, 0.0f };
// Set the viewport
glViewport ( 0, 0, esContext->width, esContext->height );
// Clear the color buffer
glClear ( GL_COLOR_BUFFER_BIT );
// Use the program object
glUseProgram ( userData->programObject );
// Load the vertex data
glVertexAttribPointer ( 0, 3, GL_FLOAT, GL_FALSE, 0, vVertices );
glEnableVertexAttribArray ( 0 );
glDrawArrays ( GL_TRIANGLES, 0, 3 );
eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface);
4.1 glClear
清除指定的buffer到预设值。可清除以下四类buffer:
- GL_COLOR_BUFFER_BIT
- GL_DEPTH_BUFFER_BIT
- GL_ACCUM_BUFFER_BIT
- GL_STENCIL_BUFFER_BIT
预设值通过glClearColor, glClearIndex, glClearDepth, glClearStencil, 和glClearAccum来设置。
1)glClearColor( GLclampf red, GLclampf green, GLclampf blue, GLclampf alpha)
指定color buffer的清除值,当调用glClear(GL_COLOR_BUFFER_BIT)时才真正用设定的颜色值清除color buffer。参数值的范围为:0~1。
2)glClearIndex(GLfloat c)
指定color index buffer清除值。
3)glClearDepth(GLclampd depth)
指定depth buffer的清除值,取值范围为:0~1,默认值为1。
4)glClearStencil(GLint s)
指定stencil buffer清除值的索引,初始值为0。
5)glClearAccum( GLfloat red,GLfloat green,GLfloat blue,GLfloat alpha)
指定accumulation buffer的清除值,初始值为0,取值范围为:-1~1
4.2 glUseProgram
安装一个program object,并把它作为当前rendering state的一部分。
1) 当一个可执行程序被安装到vertex processor,下列OpenGL固定功能将被disable:
- The modelview matrix is not applied to vertex coordinates.
- The projection matrix is not applied to vertex coordinates.
- The texture matrices are not applied to texture coordinates.
- Normals are not transformed to eye coordinates.
- Normals are not rescaled or normalized.
- Normalization of GL_AUTO_NORMAL evaluated normals is not performed.
- Texture coordinates are not generated automatically.
- Per-vertex lighting is not performed.
- Color material computations are not performed.
- Color index lighting is not performed.
- This list also applies when setting the current raster position.
2)当一个可执行程序被安装到fragment processor,下列OpenGL固定功能将被disable:
- Texture environment and texture functions are not applied.
- Texture application is not applied.
- Color sum is not applied.
- Fog is not applied.
4.3 glVertexAttribPointer
定义一个通用顶点属性数组。当渲染时,它指定了通用顶点属性数组从索引index处开始的位置和数据格式。其定义如下:
void glVertexAttribPointer(
GLuint index, // 指示将被修改的通用顶点属性的索引
GLint size, // 指点每个顶点元素个数(1~4)
GLenum type, // 数组中每个元素的数据类型
GLboolean normalized, //指示定点数据值是否被归一化(归一化<[-1,1]或[0,1]>:GL_TRUE,直接使用:GL_FALSE)
GLsizei stride, // 连续顶点属性间的偏移量,如果为0,相邻顶点属性间紧紧相邻
const GLvoid * pointer);//顶点数组:其index应该小于#define GL_MAX_VERTEX_ATTRIBS 0x8869
)
4.4glEnableVertexAttribArray
Enable由索引index指定的通用顶点属性数组。
void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);
默认状态下,所有客户端的能力被disabled,包括所有通用顶点属性数组。如果被Enable,通用顶点属性数组中的值将被访问并被用于rendering,通过调用顶点数组命令:glDrawArrays, glDrawElements,
glDrawRangeElements, glArrayElement, glMultiDrawElements, or glMultiDrawArrays.
4.5 glDrawArrays
void glDrawArrays(GLenum mode, GLint first, GLsizei count);
- mode:指明render原语,如:GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP, GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, 和 GL_POLYGON。
- first: 指明Enable数组中起始索引。
- count: 指明被render的原语个数。
可以预先使用单独的数据定义vertex、normal和color,然后通过一个简单的glDrawArrays构造一系列原语。当调用 glDrawArrays时,它使用每个enable的数组中的count个连续的元素,来构造一系列几何原
语,从第first个元素开始。
4.6 eglSwapBuffers
把EGL surface中的color buffer提交到native window进行显示。
EGLBoolean eglSwapBuffers(EGLDisplay display,EGLSurface surface)
5. 协调组织
在前面的描述中,三步曲已经完成了:
- 初始化EGL环境,为绘图做好准备
- 生成Program
- 安装并执行Program
只有这三个关键人物,还不能运行,还需要一个协调组织者。
int main(int argc, char** argv)
{
ESContext esContext;
UserData userData;
int iFrames;
unsigned long iStartTime,iEndTime;
int iDeltaTime;
memset( &esContext, 0, sizeof( ESContext) );
esContext.userData = &userData;
esContext.width = 1280;
esContext.height = 720;
// Init EGL display, surface and context
if(!InitEGL(&esContext))
{
printf("Init EGL fail\n");
return GL_FALSE;
}
// compile shader, link program
if(!CreateProgram(&esContext))
{
printf("Create Program fail\n");
return GL_FALSE;
}
iStartTime = GetCurTime();
iFrames = 0;
while(1) { // render a frame
Render();
iFrames++;
iEndTime = GetCurTime();
iDeltaTime = iEndTime - iStartTime;
if(iDeltaTime >= 5000)
{
iStartTime = iEndTime;
float fFrame = iFrames * 1000.0 / iDeltaTime;
iFrames = 0;
printf("Frame.: %f\n", fFrame);
}
}
glDeleteProgram (esContext.userData->programObject);
return GL_TRUE;
}
[TOC]
总结
- 初始化EGL渲染环境和相关元素 (第一步)
- 生成Program (第二步)
- shader的编译
- Program的链接
- CreateProgram 程序创建
vertex(顶点)
和fragment(片元)
的shader(着色器)
源码加载
- 安装并执行Program (第三步)
- 使用 OpenGL ES API 绘制图形:gl_*()
- 协调组织
- EGL释放资源