[Python] 自动化办公 多种提取PDF图片的方法

转载请注明:陈熹 chenx6542@foxmail.com (简书号:半为花间酒)
若公众号内转载请联系公众号:早起Python

这篇文章能学到的主要内容:

  1. 基于 fitz 库和正则搜索提取图片
  2. 基于 pdf2image 库的两种方法提取图片

https://pan.baidu.com/s/1dnJhtrYEdSfdSY9yu6ErkQ提取码:12z1

我们拿到一个 PDF 文件时,有时是因为兴趣有时是因为办公任务,希望将 PDF 中所有图片存到一个指定的位置。这个问题看似简单,实际上如果是手动操作较困难,不借助其他工具基本没办法完成。最后常常会变成截图保存,效率低的同时又损失了一定清晰度

在办公场景中这样的需求并不少见,因此今天跟大家系统分享几种提取 PDF 图片的方法。其实没有非常完美的方法,每种方法提取效率都不是百分之百,因此可以考虑用多种方法进行互补

1. 基于 fitz 库和正则搜索

fitzpymupdf 的子模块,需要先用命令行安装 pymupdf

pip install pymupdf

但注意导入时使用 import fitz 导入模块
利用 fitz 库提取图片需要通过正则匹配图片元素,将模板元素转化为像素后再以图片形式写出

import fitz
import re
import os

file_path = r'C:\xxx\xxx.pdf' # PDF 文件路径
dir_path = r'C:\xxx' # 存放图片的文件夹

def pdf2image1(path, pic_path):
    checkIM = r"/Subtype(?= */Image)"
    pdf = fitz.open(path)
    lenXREF = pdf._getXrefLength()
    count = 1
    for i in range(1, lenXREF):
        text = pdf._getXrefString(i)
        isImage = re.search(checkIM, text)
        if not isImage:
            continue
        pix = fitz.Pixmap(pdf, i)
        new_name = f"img_{count}.png"
        pix.writePNG(os.path.join(pic_path, new_name))
        count += 1
        pix = None

pdf2image1(file_path, dir_path)

运行提取示例文件后结果如下:

有一些很小的色块也被提取成图片,那么怎么过滤掉它们呢?
有一个简单的方法是通过大小过滤,pix 像素在 fitz 库中存在一个重要的方法 pix.size 可以反映像素多少,简单的色素块该值较低,可以通过设置一个阈值过滤。以阈值 10000 为例过滤:

import fitz
import re
import os

file_path = r'C:\xxx\xxx.pdf' # PDF 文件路径
dir_path = r'C:\xxx' # 存放图片的文件夹

def pdf2image1(path, pic_path):
    checkIM = r"/Subtype(?= */Image)"
    pdf = fitz.open(path)
    lenXREF = pdf._getXrefLength()
    count = 1
    for i in range(1, lenXREF):
        text = pdf._getXrefString(i)
        isImage = re.search(checkIM, text)
        if not isImage:
            continue
        pix = fitz.Pixmap(pdf, i)
        if pix.size < 10000: # 在这里添加一处判断一个循环
            continue # 不符合阈值则跳过至下
        new_name = f"img_{count}.png"
        pix.writePNG(os.path.join(pic_path, new_name))
        count += 1
        pix = None

pdf2image1(file_path, dir_path)

2. 基于 pdf2image 库的两种方法

一看名字就知道这个库的用处了,官方文档为:https://www.cnpython.com/pypi/pdf2image
可以简单通过 pip install pdf2image 安装,但poppler才是真正起做用的转换器,因此需要额外安装和配置:

  1. windows用户必须安装poppler for Windows,然后将bin/文件夹添加到PATH
  2. Mac用户必须安装poppler for Mac

具体发挥作用的代码官方文档也给出了详细的说明:

那么我们就分别尝试这两种方法:

from pdf2image import convert_from_path,convert_from_bytes
import tempfile
from pdf2image.exceptions import PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError
import os

file_path = r'C:\xxx\xxx.pdf' # PDF 文件路径
dir_path = r'C:\xxx' # 存放图片的文件夹

def pdf2image2(file_path, dir_path):
    images = convert_from_path(file_path, dpi=200)
    for image in images:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)
        image.save(file_path + f'\img_{images.index(image)}.png', 'PNG')

pdf2image2(file_path, dir_path)

可以成功提取图片。再试试第二种方法:

from pdf2image import convert_from_path,convert_from_bytes
import tempfile
from pdf2image.exceptions import PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError
import os

file_path = r'C:\xxx\xxx.pdf' # PDF 文件路径
dir_path = r'C:\xxx' # 存放图片的文件夹

def pdf2image3(file_path, dir_path):
    images = convert_from_bytes(open(file_path, 'rb').read())
    for image in images:
        if not os.path.exists(dir_path):
            os.makedirs(dir_path)
        image.save(file_path + f'\img_{images.index(image)}.png', 'PNG')

pdf2image3(file_path, dir_path)

结果和之前一致,这里就不再重复展示

再补充一下。核心方法 covert_from_bytes 包含大量参数,可以自行修改。
几个常用参数总结如下:

参数 意义
pdf_path PDF 文档路径
dpi 图像质量(如果是学术期刊杂志常见 300dpi)
output_folder 将生成的图像写入文件夹(而不是直接写入内存)
first_page 起始转换页数
last_page 转换至哪一页
fmt 图像格式,可以指定为 png,默认为 ppm
thread_count 允许参与转换的线程数
userpw PDF 的密码
output_file 输出文件名
poppler_path 指定 poppler 的安装路径,一开始配置好就无需指定

值得一提 thread_count 参数,多线程会大大加快转换速度,尤其是 PDF 页面较多时。有兴趣的读者可以做尝试。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342