Python股票数据分析(tushare/seaborn)

python版本:3.4
最近在学习基于python的股票数据分析,其中主要用到了tushare和seaborn。tushare是一款财经类数据接口包,国内的股票数据还是比较全的,官网地址:http://tushare.waditu.com/index.html#id5 。seaborn则是一款绘图库,通过seaborn可以轻松地画出简洁漂亮的图表,而且库本身具有一定的统计功能。
导入的模块:
import matplotlib.pyplot as plt
import seaborn as sns
import seaborn.linearmodels as snsl

from datetime import datetime
import tushare as ts
代码部分:
股票收盘价走势曲线
<code>sns.set_style("whitegrid")</code>
end = datetime.today() #开始时间结束时间,选取最近一年的数据
start = datetime(end.year-1,end.month,end.day)
end = str(end)[0:10]
start = str(start)[0:10]

stock = ts.get_hist_data('300104',start,end)#选取一支股票
stock['close'].plot(legend=True ,figsize=(10,4))
<code>plt.show()</code>

股票日线

同理,可以做出5日均线、10日均线以及20日均线
stock[['close','ma5','ma10','ma20']].plot(legend=True ,figsize=(10,4))

日线、5日均线、10日均线、20日均线

股票每日涨跌幅度
stock['Daily Return'] = stock['close'].pct_change()
stock['Daily Return'].plot(legend=True,figsize=(10,4))

每日涨跌幅

核密度估计
sns.kdeplot(stock['Daily Return'].dropna())

核密度估计

核密度估计+统计柱状图
sns.distplot(stock['Daily Return'].dropna(),bins=100)

核密度+柱状图

两支股票的皮尔森相关系数
sns.jointplot(stock['Daily Return'],stock['Daily Return'],alpha=0.2)

皮尔森相关系数

多只股票相关性计算
<code>stock_lis=['300113','300343','300295','300315`] #随便选取了四支互联网相关的股票</code>
<code>df=pd.DataFrame()</code>

     closing_df = ts.get_hist_data(stock,start,end)['close']
     df = df.join(pd.DataFrame({stock:closing_df}),how='outer')```
```tech_rets = df.pct_change()```
<code>snsl.corrplot(tech_rets.dropna())</code>


![相关性](http://upload-images.jianshu.io/upload_images/2166775-e37e7396d6b405b9.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)

简单地计算股票的收益与风险,衡量股票收益与风险的数值分别为股票涨跌的平均值以及标准差,平均值为正则说明收益是正的,标准差越大则说明股票波动大,风险也大。
```rets = tech_rets.dropna()```
<code>plt.scatter(rets.mean(),rets.std())</code>
```plt.xlabel('Excepted Return')```
<code>plt.ylabel('Risk')</code>
```for label,x,y in zip(rets.columns,rets.mean(),rets.std()):#添加标注
     plt.annotate(
                  label,
                  xy =(x,y),xytext=(15,15),
                  textcoords = 'offset points',
                  arrowprops = dict(arrowstyle = '-',connectionstyle = 'arc3,rad=-0.3'))```


![收益风险](http://upload-images.jianshu.io/upload_images/2166775-2d99abea2190b8e0.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,924评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,781评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,813评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,264评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,273评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,383评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,800评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,482评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,673评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,497评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,545评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,240评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,802评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,866评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,101评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,673评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,245评论 2 341

推荐阅读更多精彩内容