互相关运算与卷积运算
卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。
特征图与感受野
二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素xx的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做xx的感受野(receptive field)。
以图1为例,输入中阴影部分的四个元素是输出中阴影部分元素的感受野。我们将图中形状为2×22×2的输出记为YY,将YY与另一个形状为2×22×2的核数组做互相关运算,输出单个元素zz。那么,zz在YY上的感受野包括YY的全部四个元素,在输入上的感受野包括其中全部9个元素。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。
填充和步幅
我们介绍卷积层的两个超参数,即填充和步幅,它们可以对给定形状的输入和卷积核改变输出形状。
填充
填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素),图2里我们在原输入高和宽的两侧分别添加了值为0的元素。
图2 在输入的高和宽两侧分别填充了0元素的二维互相关计算
如果原输入的高和宽是nhnh和nwnw,卷积核的高和宽是khkh和kwkw,在高的两侧一共填充phph行,在宽的两侧一共填充pwpw列,则输出形状为:
(nh+ph−kh+1)×(nw+pw−kw+1)(nh+ph−kh+1)×(nw+pw−kw+1)
我们在卷积神经网络中使用奇数高宽的核,比如3×33×3,5×55×5的卷积核,对于高度(或宽度)为大小为2k+12k+1的核,令步幅为1,在高(或宽)两侧选择大小为kk的填充,便可保持输入与输出尺寸相同。
步幅
在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。此前我们使用的步幅都是1,图3展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。
图3 高和宽上步幅分别为3和2的二维互相关运算
一般来说,当高上步幅为shsh,宽上步幅为swsw时,输出形状为:
⌊(nh+ph−kh+sh)/sh⌋×⌊(nw+pw−kw+sw)/sw⌋⌊(nh+ph−kh+sh)/sh⌋×⌊(nw+pw−kw+sw)/sw⌋
如果ph=kh−1ph=kh−1,pw=kw−1pw=kw−1,那么输出形状将简化为⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋⌊(nh+sh−1)/sh⌋×⌊(nw+sw−1)/sw⌋。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是(nh/sh)×(nw/sw)(nh/sh)×(nw/sw)。
当ph=pw=pph=pw=p时,我们称填充为pp;当sh=sw=ssh=sw=s时,我们称步幅为ss。
多输入通道和多输出通道
之前的输入和输出都是二维数组,但真实数据的维度经常更高。例如,彩色图像在高和宽2个维度外还有RGB(红、绿、蓝)3个颜色通道。假设彩色图像的高和宽分别是hh和ww(像素),那么它可以表示为一个3×h×w3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。
多输入通道
卷积层的输入可以包含多个通道,图4展示了一个含2个输入通道的二维互相关计算的例子。
图4 含2个输入通道的互相关计算
假设输入数据的通道数为cici,卷积核形状为kh×kwkh×kw,我们为每个输入通道各分配一个形状为kh×kwkh×kw的核数组,将cici个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把cici个核数组在通道维上连结,即得到一个形状为ci×kh×kwci×kh×kw的卷积核。
多输出通道
卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为cici和coco,高和宽分别为khkh和kwkw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为ci×kh×kwci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即co×ci×kh×kwco×ci×kh×kw。
对于输出通道的卷积核,我们提供这样一种理解,一个ci×kh×kwci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的ci×kh×kwci×kh×kw的核数组,不同的核数组提取的是不同的特征。