java序列化机制,这一篇文章就够了

这篇文章开始讲java对象的序列化,这是因为近期自己的项目当中,大量使用了序列化技术,这里面有java提供的序列化技术,也有一些序列化框架;所以,下定决心把java的序列化技术整理一下,以供参考。这是序列化系列的第一篇文章,所以主要是描述java提供的序列化技术。后续系列再分别讲使用框架实现序列化。

按照惯例,先给出这篇文章的大致脉络

首先,描述了序列化技术的使用场景和序列化的几种方案。

接着,讲java提供的序列化技术

然后,就是需要注意的几个问题,比如transient关键字、序列化ID的作用、深度克隆等等

最后,对java提供的系列化技术的一个总结

首先看文章第一部分。

一、认识序列化

1、从网络通信认识序列化

为了很好的理解序列化,先不讲概念,而是先从网络通信谈起,我们知道现在的网络通信技术基本上都是基于TCP/IP来实现的。假设我们有两台电脑,这两台电脑之间写好了java程序,一个是send端,一个是receive端,要实现他们的通信,其底层是怎么实现的呢?请看下面这张图。


1-通信协议.png

从上面这张图我们可以看到,两个进程进行通信时候,想要发送数据,要先要把数据发送到TCP缓冲区,然后形成报文再发送出去,同样的道理,接收端也是一样。我们可以相互发送各种类型的数据,包括文本、图片、音频、视频等, 而这些数据都会以二进制序列的形式在网络上传送。同样的,当两个Java进程进行通信时,也可以使用序列化技术实现对象之间的传递。

为了理解起来方便,再来看一张图。

2-序列化环节.png

从这张图也可以清晰的看出,发送数据之前要序列化,接受数据要反序列化。到了这,我们再来看序列化的概念就比较好理解了,一句话:Java序列化是指把Java对象转换为字节序列的过程,而Java反序列化是指把字节序列恢复为Java对象的过程;

2、序列化的使用场景

这个使用场景应该算是最重要的一环了,因为我们学习序列化就是为了使用他,现在把他们归纳一下:

(1)永久性保存对象,保存对象的字节序列到本地文件或者数据库中; (2)通过序列化以字节流的形式使对象在网络中进行传递和接收; (3)通过序列化在进程间传递对象;

3、序列化有什么好处呢?

其实好处是根据使用场景来的;

(1)实现了数据的持久化,通过序列化可以把数据永久地保存到硬盘上

(2)利用序列化实现远程通信,即在网络上传送对象的字节序列。

4、序列化技术都有哪些?

文字总是看着很枯燥,还是看图吧。

3-序列化技术.png

看起来很多呀,不过后续的课程中,我会一个一个的讲,或者是挑主要的,而且里面我也没有全用过,大概会六七种吧。这篇文章也主要看第一个java的序列化机制。

二、java序列化机制

从上面的图中我们也已经看到了,java序列化主要有两个接口,这两个接口的实现方式,我都会给出,但是重点在于serialize接口的实现方式。在这一部分中,先给出序列化基本的代码实现,在下一部分当中再来看序列化有哪些需要注意的问题。OK,现在开始代码实现java的序列化机制。

1、使用Serializable接口实现序列化(重点,要牢记,第三部分会多次使用)

首先我们定义一个对象类User

public class User implements Serializable {
    //序列化ID
    private static final long serialVersionUID = 1L;
    private int age;
    private String name;
    //getter和setter方法、
    //toString方法
}

接下来,在Test类中去实现序列化和反序列化。

public class Test {
    public static void main(String[] args) throws Exception, IOException {
        //SerializeUser();
        DeSerializeUser();
    }
    //序列化方法
    private static void SerializeUser() throws FileNotFoundException, IOException {
        User user = new User();
        user.setName("Java的架构师技术栈");
        user.setAge(24);
        //序列化对象到文件中
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("G://Test/template"));
        oos.writeObject(user);
        oos.close();
        System.out.println("序列化对象成功");
    }
    //反序列化方法
    private static void DeSerializeUser() throws FileNotFoundException, IOException{
        File file = new File("G://Test/template");
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream(file));
        User newUser = (User)ois.readObject();
        System.out.println("反序列化对象成功"+newUser.toString());
    }
}

当我们运行序列化方法时候,就可以看到,我们把数据存在了G://Test/template。

同时当我们运行反序列化方法的时候,就可以看到,反序列化成功,结果就不贴出来了,比较简单。

2、使用Externalizable接口实现序列化

首先,定义一个User1类

public class User1 implements Externalizable{
    private int age;
    private String name;
    //getter、setter
    //toString方法
    
    public User1() {}
    
    @Override
    public void writeExternal(ObjectOutput out) throws IOException {
    }
    @Override
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
    }
}

然后就是Test1类,和上面的Test一样,就不再贴出来了。在这里主要看Externalizable和Serializable接口的区别。下面对其进行归纳一下。

(1)Externalizable继承自Serializable接口

(2)需要我们重写writeExternal()与readExternal()方法

(3)实现Externalizable接口的类必须要提供一个public的无参的构造器。

因此,我们可以对writeExternal()与readExternal()方法重新更改一下;

    @Override
    public void writeExternal(ObjectOutput out) throws IOException {
        out.writeObject(name);
        out.writeInt(age);
    }
    @Override
    public void readExternal(ObjectInput in) throws IOException, ClassNotFoundException {
        name = (String)in.readObject();
        age = in.readInt();
    }

到这,java序列化机制的基本使用就讲完了,从上面可以看出,使用起来还是非常简单的。不过,仅仅会基本的使用还不行,想要面试的时候更加的装13,还需要进一步深化。因此下面一部分主要就是对序列化机制的深入分析。还需要说一点,对于Serializable接口实现的序列化方式一定要牢记,因为下面要多次使用
三、深入分析java序列化机制

1、serialVersionUID的作用

​ 一句话:其目的是序列化对象版本控制,有关各版本反序列化时是否兼容。如果在新版本中这个值修改了,新版本就不兼容旧版本,反序列化时会抛出InvalidClassException异常。如果修改较小,比如仅仅是增加了一个属性,我们希望向下兼容,老版本的数据都能保留,那就不用修改;如果我们删除了一个属性,或者更改了类的继承关系,必然不兼容旧数据,这时就应该手动更新版本号,即SerialVersionUid。

serialVersionUID有两种显示的生成方式:
一是默认的1L,比如:private static final long serialVersionUID = 1L;
二是根据类名、接口名、成员方法及属性等来生成一个64位的哈希字段,比如:
private static final long serialVersionUID = xxxxL;

现在我们去验证一下序列化版本不一致的情况:

首先我们在User里面设置一下serialVersionUID=123456L。

public class User implements Serializable {
    //序列化ID
    private static final long serialVersionUID = 123456L;
    。。。。。
}

然后再Test里面开始序列化。

接着我们更改serialVersionUID = 123456789L。然后再反序列化,就可以看到如下的错误了。同时也验证了序列化和反序列化需要版本一致的问题。

4-序列化结果2.png

2、静态变量的序列化

首先需要说一下,静态变量不会被序列化。因为静态变量在全局区,本来流里面就没有写入静态变量,我打印静态变量当然会去全局区查找,当我write read 同时使用时,内存中的静态变量变了,所以打印出来的也变了。眼见为实,代码验证一下;

下面这个例子,主要是在对静态变量序列化之后,然后更改静态变量age的值,再重新反序列化输出一下。结果会出现两种情况:

(1)反序列输出的静态变量值没有变化:说明静态变量被序列化了。

(2)反序列输出的静态变量值变化了:说明静态变量没有被序列化了。

第一步:把User里面的年龄属性改成static静态类型

第二步:现在改一下Test类

    //序列化
    private static void SerializeUser() throws 
    FileNotFoundException, IOException, ClassNotFoundException {
        User user = new User();
        user.setName("Java的架构师技术栈");
        //初始化之前静态变量age年龄是24.
        user.setAge(24);
        ObjectOutputStream oos = 
        new ObjectOutputStream(new FileOutputStream("G://Test/template"));
        oos.writeObject(user);
        oos.close();
        
        //现在把年龄改成18
        user.setAge(18);
        ObjectInputStream oin = 
        new ObjectInputStream(new FileInputStream( "G://Test/template"));
        User modifyUser = (User) oin.readObject();
        oin.close();

        //再读取,通过t.staticVar打印新的值
        System.out.println("静态变量age:"+modifyUser.getAge());
    }

然后看一下输出结果


4-序列化结果3.png

3、Transient 关键字作用

Transient 关键字的作用是控制变量的序列化,在变量声明前加上该关键字,可以阻止该变量被序列化到文件中,在被反序列化后,transient 变量的值被设为初始值,如 int 型的是 0,对象型的是 null。

这个很好理解也很简单。下面代码来看一下他的作用

第一步:把User里面的年龄属性改成Transient 修饰。private transient int age;

第二步:Test不变,进行序列化和反序列化。

第三步:看结果。反序列化之后的输出age应该为0;


4-序列化结果4.png

4、使用序列化实现深度克隆

对象的克隆也叫作对象的拷贝,拷贝有浅拷贝和深拷贝之分。

  • 浅拷贝:使用一个已知实例对新创建实例的成员变量逐个赋值,这个方式被称为浅拷贝。

  • 深拷贝:当一个类的拷贝构造方法,不仅要复制对象的所有非引用成员变量值,还要为引用类型的成员变量创建新的实例,并且初始化为形式参数实例值。这个方式称为深拷贝。

浅拷贝存在对象属性拷贝不彻底问题。因此在这里我们的侧重点不是克隆问题,我们的关注点更在于深拷贝。现在抛弃之前的User。我们重新定义一个类Person。

第一步:定义一个CloneUtils

public class CloneUtils {
    public static <T extends Serializable> T clone(T obj){
        T cloneObj = null;
        try {
            //写入字节流
            ByteArrayOutputStream out = new ByteArrayOutputStream();
            ObjectOutputStream obs = new ObjectOutputStream(out);
            obs.writeObject(obj);
            obs.close();
            
            //分配内存,写入原始对象,生成新对象
            ByteArrayInputStream ios = new ByteArrayInputStream(out.toByteArray());
            ObjectInputStream ois = new ObjectInputStream(ios);
            //返回生成的新对象
            cloneObj = (T) ois.readObject();
            ois.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
        return cloneObj;
    }
}

第二步:定义一个person类

public class Person implements Serializable {
    private static final long serialVersionUID = 123456L;
    private String name;
    //带参构造器
    //getter、setter
    //toString方法
}

第三步:在Test2类中实现深度克隆

public class Test2 {
    public static void main(String[] args) {
        Person person1 =  new Person("张三");  
        Person person2 =  CloneUtils.clone(person1);
        person2.setName("李四");
        Person person3 =  CloneUtils.clone(person1);
        person3.setName("王五");
        
        System.out.println("person1 "+person1.getName());
        System.out.println("person1 "+person2.getName());
        System.out.println("person1 "+person3.getName());
    }
}
//相应的输出是:张三、李四、王五

四、总结

好了,到这里我们对java序列化机制已经有了基本的了解了,从一开始的网络机制,到最后的深拷贝。总之,java提供的序列化机制还是比较常用的,也是比较简单的。但是并不是说,平时开发的时候这一种就可以满足了,还有一些问题java提供的序列化机制是不能满足我们的要求的。比如说跨语言之间的序列化。因为在当前的开发中,可能需要C语言和java进行通信。就比如我现在的项目需要无人机和服务端通信。无人机上的ros系统,另外的开发人员就是通过C++开发的,但是后端我使用java实现的,这就涉及到了这个问题。

当然这里只给出序列化系列的第一篇,在文章一开始提到了多种序列化技术,没关系,慢慢来。喜欢的可以关注我,后续系列我会慢慢推出,谢谢支持
另外给出我的微信公众号,谢谢关注


微信公众号.jpg
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 201,681评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,710评论 2 377
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,623评论 0 334
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,202评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,232评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,368评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,795评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,461评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,647评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,476评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,525评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,226评论 3 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,785评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,857评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,090评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,647评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,215评论 2 341

推荐阅读更多精彩内容