证明DES解密是加密的逆。

DES 算法利用一个56+8奇偶校验位(第8, 16, 24, 32, 40, 48, 56, 64位)=64位的密钥对以64位为单位的块数据进行加解密。它是一个迭代的分组密码,利用了使用 Feistel 结构。

下图为Feistel结构。


其中Plaintext(2w bits)是2w长度的明文分组和密钥K,其被分为等长的两部分L0和R0。明文组会经过轮函数F和密钥的N轮迭代后合并成密文组。第i轮迭代的两部分数据是由上一轮数据迭代后的结果,而密钥Ki是Ki-1经过不同的密钥生成算法得出的。

第i轮加密算法用公式表示为(E代表加密过程):(1)、Li(E)=Ri-1(E)  (2)、Ri(E)=Li-1(E)⊕F(Ri-1(E),Ki)。但最后一轮迭代后,有一个附加的左右置换过程。

而DES是迭代16轮,明文经过加密后得到该密文为R(E)-L(E)。

解密过程:(D为解密过程)

第一轮:                                                                                                                          

  输入为:L0(D)=R16(E),R0(D)=L16(E);将上述的公式的加密过程改为解密过程。而把密钥的顺序倒序使用。可得:(3)、Li(D)=Ri-1(D)  (4)、Ri(D)=Li-1(D)⊕F(Ri-1(D),K17-i)。                                       

输出为:                                                                                                                                        

   L1(D)=R0(D)且R0(D)=L16(E)又因为有加密算法公式可得L16(E)=R15(E)所以L1(D)=R0(D)=L16(E)=R15(E)  即是  L1(D)= R15(E) 。                                                                                                               

     R1(D)=L0(D)⊕F(R0(D),K16)因为上式可知L0(D)=R16(E)且R0(D)=R15(E)所以R1(D)=R16(E)⊕F(R15(E),K16)又因为有加密算法公式可得R16(E)=L15(E)⊕F(R15(E),K16)所以R1(D)=L15(E)⊕F(R15(E),K16)⊕F(R15(E),K16)=L15(E) 所以可以得出R1(D)=L15(E)。

以下剩下的15轮迭代依次类推。可以得出的结论是:

Li(D)=R16-i(E)

Ri(D)=L16-i(E)

则第16轮的迭代结果为L16(D)-R16(D)=R0(E)-L0(E)。                   

 最后还有一次左右置换过程。即得到L0(E)-R0(E)(为加密前的明文组)。

综上所述:可证得DES加密和解密的过程相同,密钥的使用顺序相反,即DES的解密是加密的逆。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容