高效实现卷积运算

假设有如下锐化公式:
sharpened_pixel = 5 * current - left - right - up - down
代码实现如下:

void Sharpen(const cv::Mat& image, cv::Mat& result)
{
#ifndef _USE_KERNEL
    result.create(image.size(), image.type());
    int nchannels = image.channels();

    for (int i = 1; i < image.rows - 1; i++) {
        const uchar* previous = image.ptr<const uchar>(i - 1); // 上一行
        const uchar* current = image.ptr<const uchar>(i); // 当前行
        const uchar* next = image.ptr<const uchar>(i + 1); // 下一行
        uchar* output = result.ptr<uchar>(i);
        for (int j = 0; j < (image.cols - 1) * nchannels; j++) {
            // 应用锐化算子
            *output++ = cv::saturate_cast<uchar>(
                5 * current[j] - current[j - nchannels] - current[j + nchannels] - previous[j] - next[j]);
        }
    }
    result.row(0).setTo(cv::Scalar(0));
    result.row(result.rows - 1).setTo(cv::Scalar(0));
    result.col(0).setTo(cv::Scalar(0));
    result.col(result.cols - 1).setTo(cv::Scalar(0));
    return;
#endif // !_USE_KERNEL
    cv::Mat kernel(3,3,CV_32F, Scalar(0));
    kernel.at<float>(1, 1) = 5.0;
    kernel.at<float>(0, 1) = -1.0;
    kernel.at<float>(2, 1) = -1.0;
    kernel.at<float>(1, 0) = -1.0;
    kernel.at<float>(1, 2) = -1.0;
    cout << image.depth() << endl;
    cv::filter2D(image, result, image.depth(), kernel);
}

其中卷积函数:

CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth,
                            InputArray kernel, Point anchor = Point(-1,-1),
                            double delta = 0, int borderType = BORDER_DEFAULT );

src :输入图像
dst:输出图像
ddepth:目标图像的期望深度
kernel:卷积核
anchor:内核的锚点,表示内部经过过滤的点的相对位置内核;锚应该位于内核内;默认值(-1,-1)表示锚点在内核中心
delta:offset值,默认为0
borderType:边界填充的类型,在滤波的过程中,会根据滤波器的尺寸在图像的边界填充一定的数量的像素值,以保证输入与输出具有相同的尺寸,这个参数指定边界填充的规则;目前支持一下几种规则

enum BorderTypes {
    BORDER_CONSTANT    = 0, //!< `iiiiii|abcdefgh|iiiiiii`  with some specified `i`
    BORDER_REPLICATE   = 1, //!< `aaaaaa|abcdefgh|hhhhhhh`
    BORDER_REFLECT     = 2, //!< `fedcba|abcdefgh|hgfedcb`
    BORDER_WRAP        = 3, //!< `cdefgh|abcdefgh|abcdefg`
    BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba`
    BORDER_TRANSPARENT = 5, //!< `uvwxyz|abcdefgh|ijklmno`

    BORDER_REFLECT101  = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
    BORDER_DEFAULT     = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101
    BORDER_ISOLATED    = 16 //!< do not look outside of ROI
};

参考博客:https://cloud.tencent.com/developer/article/1350371

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,009评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,808评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,891评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,283评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,285评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,409评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,809评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,487评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,680评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,499评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,548评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,268评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,815评论 3 304
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,872评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,102评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,683评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,253评论 2 341

推荐阅读更多精彩内容