StatQuest-PCA学习

刘小泽写于19.4.27
聚类分析的基础就是PCA,掌握这个对以后那么这次就先跟着statquest来学习一下,视频链接在https://www.youtube.com/watch?v=FgakZw6K1QQ&feature=youtu.be>

好的,首先看看为什么需要进行PCA?

假设现在有一个表达矩阵,行为基因,列为样本,中间数据是表达量:

  • 先假设有1个基因,在6个样本中存在


    1个基因

    把这6个表达量都显示出来,可以在一条直线上绘制出高表达和低表达(可以看到1,2,3更接近,并且高于4,5,6)

  • 再加1个基因,还是6个样本中存在

    2个基因

    构建了一个2维空间,基因1的表达量可以用横轴表示,基因2用纵轴表示。可以看到在基因1、2的作用下,样本1、2、3聚集在右上角,4、5、6聚集在左下角

  • 如果3个基因呢?

    3个基因

    就构建出了3维空间,点越小意味着数值越大,离得越远

  • 但是,如果是4个基因,我们就无法画出数据了,因为需要4维空间

因此,PCA的作用就是:对超过4维的数据降维到一个2D平面图中,并且这个图中"相似相聚"

PCA怎么操作的?

还是利用2维(2个基因)的数据进行理解:

  1. 先得到Gene1的平均数(横轴红色)
  1. 同理得到Gene2的平均数(纵轴红色)。
  2. 接着计算整个数据的中心:(蓝色)
  1. 然后将数据平移,保证最后的中心在(0,0)的位置

这里注意:数据平移并不会改变数据结构以及相互之间的大小关系,比如原来最大的值现在还是最大;原来在最左下方的现在还是在那个位置

  1. 平移后的数据可以做一个辅助线进行拟合。先随便画一条穿过中心点的线,然后进行旋转,尽量拟合进来最多的数值。

    这里又引入一个问题:PCA是怎么判断哪条拟合线质量最好呢?

    比如随便画一条,然后将数据投射到这条线上,它看的是投射点到原点/中心点(0,0)的距离平方

    得到了PC1这条拟合线,假设斜率为0.25,就意味着:沿着x轴走4个单位,才沿着y轴走1个单位(术语叫做:Gene1和Gene2的线性组合=> linear combination)。换句话说就是数据主要是沿着Gene1的x轴分布,数据整体分布受Gene1的影响更大

    因此,当看到"PC1 is a linear combination of variables",意思就是PC1是由几种Gene1成分加上几种Gene2成分组成的

  2. 确定了PC1后,进行scale缩放操作,将红线长度缩放成1,其他两边也进行等比例缩放。【术语:0.97的Gene1与0.242的Gene2叫做PC1的"Singular Vector"或者"Eigenvector"】 ,然后Eigenvector再开方得到的结果叫"Singlular Value for PC1"

  3. 因为这是一个2维的图形,因此PC2是PC1的垂直线,并且不需要任何进一步的操作


  4. 然后就是画最终的PCA plot

    首先就是将PC1放到水平


    接着找到PC1、PC2同一个投射点在2D图中的位置,比如Sample6

  5. 计算PC1、PC2的贡献率

    先分别计算PC1、PC2的variation,然后算比例即可

总结

对于简单的二维数据,很方便理解,n维数据也是这样处理,大体思路就是:

  • 计算n个维度(或者说n个基因)的均值,找到数据中心

  • 中心平移到(0,0)

  • 找到跨过中心点的最佳拟合线=》PC1=》有n个组成成分(例如:0,62 parts Gene1; 0.15 parts Gene2; 0.77 parts Gene3,其中Gene3 is the most ingredient for PC1)

  • 找到垂直的PC2,同样n个组成成分 。。。

  • 最后找到PCn,它与前面的各个PC都垂直

  • PC1放到水平,然后根据PC1~PCn中同一个sample画出交点
    (因此这也说明了为什么通过PCA可以看批次效应:因为PCA图中的每个点都是一个sample,这个点中包含了大量的表达量信息;如果说本来生物学重复的sample在PCA图上离得很远,那么就意味着它们的表达量差异很大,这是不符合实际的,因此可能存在批次效应)

  • 根据每个PC的variation计算贡献率


欢迎关注我们的公众号~_~  
我们是两个农转生信的小硕,打造生信星球,想让它成为一个不拽术语、通俗易懂的生信知识平台。需要帮助或提出意见请后台留言或发送邮件到jieandze1314@gmail.com

Welcome to our bioinfoplanet!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容