压缩列表

构成

压缩列表是 Redis 为了节约内存而开发的, 由一系列特殊编码的连续内存块组成的顺序型(sequential)数据结构。

一个压缩列表可以包含任意多个节点(entry), 每个节点可以保存一个字节数组或者一个整数值。


image.png

图 7-2 展示了一个压缩列表示例:

  • 列表 zlbytes 属性的值为 0x50 (十进制 80), 表示压缩列表的总长为 80 字节。
  • 列表 zltail 属性的值为 0x3c (十进制 60), 这表示如果我们有一个指向压缩列表起始地址的指针 p , 那么只要用指针 p 加上偏移量 60 , 就可以计算出表尾节点 entry3 的地址。
  • 列表 zllen 属性的值为 0x3 (十进制 3), 表示压缩列表包含三个节点。
image.png

图 7-3 展示了另一个压缩列表示例:

  • 列表 zlbytes 属性的值为 0xd2 (十进制 210), 表示压缩列表的总长为 210 字节。
  • 列表 zltail 属性的值为 0xb3 (十进制 179), 这表示如果我们有一个指向压缩列表起始地址的指针 p , 那么只要用指针 p 加上偏移量 179 , 就可以计算出表尾节点 entry5 的地址。
  • 列表 zllen 属性的值为 0x5 (十进制 5), 表示压缩列表包含五个节点。
image.png

每个压缩列表节点可以保存一个字节数组或者一个整数值, 其中, 字节数组可以是以下三种长度的其中一种:

  • 长度小于等于 63 (2^{6}-1)字节的字节数组;
  • 长度小于等于 16383 (2^{14}-1) 字节的字节数组;
  • 长度小于等于 4294967295 (2^{32}-1)字节的字节数组;

而整数值则可以是以下六种长度的其中一种:

  • 4 位长,介于 0 至 12 之间的无符号整数;
  • 1 字节长的有符号整数;
  • 3 字节长的有符号整数;
  • int16_t 类型整数;
  • int32_t 类型整数;
  • int64_t 类型整数。
    每个压缩列表节点都由 previous_entry_length 、 encoding 、 content 三个部分组成, 如图 7-4 所示。
image.png

压缩列表节点介绍

节点的 previous_entry_length 属性以字节为单位, 记录了压缩列表中前一个节点的长度。

previous_entry_length 属性的长度可以是 1 字节或者 5 字节:

  • 如果前一节点的长度小于 254 字节, 那么 previous_entry_length 属性的长度为 1 字节: 前一节点的长度就保存在这一个字节里面。
  • 如果前一节点的长度大于等于 254 字节, 那么 previous_entry_length 属性的长度为 5 字节: 其中属性的第一字节会被设置为 0xFE (十进制值 254), 而之后的四个字节则用于保存前一节点的长度。

图 7-5 展示了一个包含一字节长 previous_entry_length 属性的压缩列表节点, 属性的值为 0x05 , 表示前一节点的长度为 5 字节。

image.png

图 7-6 展示了一个包含五字节长 previous_entry_length 属性的压缩节点, 属性的值为 0xFE00002766 , 其中值的最高位字节 0xFE 表示这是一个五字节长的 previous_entry_length 属性, 而之后的四字节 0x00002766 (十进制值 10086 )才是前一节点的实际长度。


image.png

因为节点的 previous_entry_length 属性记录了前一个节点的长度, 所以程序可以通过指针运算, 根据当前节点的起始地址来计算出前一个节点的起始地址。

举个例子, 如果我们有一个指向当前节点起始地址的指针 c , 那么我们只要用指针 c 减去当前节点 previous_entry_length 属性的值, 就可以得出一个指向前一个节点起始地址的指针 p , 如图 7-7 所示。


image.png

压缩列表的从表尾向表头遍历操作就是使用这一原理实现的: 只要我们拥有了一个指向某个节点起始地址的指针, 那么通过这个指针以及这个节点的 previous_entry_length 属性, 程序就可以一直向前一个节点回溯, 最终到达压缩列表的表头节点。

图 7-8 展示了一个从表尾节点向表头节点进行遍历的完整过程:

  • 首先,我们拥有指向压缩列表表尾节点 entry4 起始地址的指针 p1 (指向表尾节点的指针可以通过指向压缩列表起始地址的指针加上 zltail 属性的值得出);
  • 通过用 p1 减去 entry4 节点 previous_entry_length 属性的值, 我们得到一个指向 entry4 前一节点 entry3 起始地址的指针 p2 ;
  • 通过用 p2 减去 entry3 节点 previous_entry_length 属性的值, 我们得到一个指向 entry3 前一节点 entry2 起始地址的指针 p3 ;
  • 通过用 p3 减去 entry2 节点 previous_entry_length 属性的值, 我们得到一个指向 entry2 前一节点 entry1 起始地址的指针 p4 , entry1 为压缩列表的表头节点;
  • 最终, 我们从表尾节点向表头节点遍历了整个列表。
image.png

encoding

节点的 encoding 属性记录了节点的 content 属性所保存数据的类型以及长度:

  • 一字节、两字节或者五字节长, 值的最高位为 00 、 01 或者 10 的是字节数组编码: 这种编码表示节点的 content 属性保存着字节数组, 数组的长度由编码除去最高两位之后的其他位记录;
  • 一字节长, 值的最高位以 11 开头的是整数编码: 这种编码表示节点的 content 属性保存着整数值, 整数值的类型和长度由编码除去最高两位之后的其他位记录;

表 7-2 记录了所有可用的字节数组编码, 而表 7-3 则记录了所有可用的整数编码。 表格中的下划线 _ 表示留空, 而 b 、 x 等变量则代表实际的二进制数据, 为了方便阅读, 多个字节之间用空格隔开。


image.png

content

节点的 content 属性负责保存节点的值, 节点值可以是一个字节数组或者整数, 值的类型和长度由节点的 encoding 属性决定。

图 7-9 展示了一个保存字节数组的节点示例:

  • 编码的最高两位 00 表示节点保存的是一个字节数组;
  • 编码的后六位 001011 记录了字节数组的长度 11 ;
  • content 属性保存着节点的值 "hello world" 。


图 7-10 展示了一个保存整数值的节点示例:

  • 编码 11000000 表示节点保存的是一个 int16_t 类型的整数值;
  • content 属性保存着节点的值 10086 。


    image.png

连锁更新

前面说过, 每个节点的 previous_entry_length 属性都记录了前一个节点的长度:

  • 如果前一节点的长度小于 254 字节, 那么 previous_entry_length 属性需要用 1 字节长的空间来保存这个长度值。
  • 如果前一节点的长度大于等于 254 字节, 那么 previous_entry_length 属性需要用 5 字节长的空间来保存这个长度值。

现在, 考虑这样一种情况: 在一个压缩列表中, 有多个连续的、长度介于 250 字节到 253 字节之间的节点 e1 至 eN , 如图 7-11 所示。

image.png

因为 e1 至 eN 的所有节点的长度都小于 254 字节, 所以记录这些节点的长度只需要 1 字节长的 previous_entry_length 属性, 换句话说, e1 至 eN 的所有节点的 previous_entry_length 属性都是 1 字节长的。

这时, 如果我们将一个长度大于等于 254 字节的新节点 new 设置为压缩列表的表头节点, 那么 new 将成为 e1 的前置节点, 如图 7-12 所示。


image.png

因为 e1 的 previous_entry_length 属性仅长 1 字节, 它没办法保存新节点 new 的长度, 所以程序将对压缩列表执行空间重分配操作, 并将 e1 节点的 previous_entry_length 属性从原来的 1 字节长扩展为 5 字节长。

现在, 麻烦的事情来了 —— e1 原本的长度介于 250 字节至 253 字节之间, 在为 previous_entry_length 属性新增四个字节的空间之后, e1 的长度就变成了介于 254 字节至 257 字节之间, 而这种长度使用 1 字节长的 previous_entry_length 属性是没办法保存的。

因此, 为了让 e2 的 previous_entry_length 属性可以记录下 e1 的长度, 程序需要再次对压缩列表执行空间重分配操作, 并将 e2 节点的 previous_entry_length 属性从原来的 1 字节长扩展为 5 字节长。

正如扩展 e1 引发了对 e2 的扩展一样, 扩展 e2 也会引发对 e3 的扩展, 而扩展 e3 又会引发对 e4 的扩展……为了让每个节点的 previous_entry_length 属性都符合压缩列表对节点的要求, 程序需要不断地对压缩列表执行空间重分配操作, 直到 eN 为止。

Redis 将这种在特殊情况下产生的连续多次空间扩展操作称之为“连锁更新”(cascade update), 图 7-13 展示了这一过程。

image.png

除了添加新节点可能会引发连锁更新之外, 删除节点也可能会引发连锁更新。

考虑图 7-14 所示的压缩列表, 如果 e1 至 eN 都是大小介于 250 字节至 253 字节的节点, big 节点的长度大于等于 254 字节(需要 5 字节的 previous_entry_length 来保存), 而 small 节点的长度小于 254 字节(只需要 1 字节的 previous_entry_length 来保存), 那么当我们将 small 节点从压缩列表中删除之后, 为了让 e1 的 previous_entry_length 属性可以记录 big 节点的长度, 程序将扩展 e1 的空间, 并由此引发之后的连锁更新。

image.png

因为连锁更新在最坏情况下需要对压缩列表执行 N 次空间重分配操作, 而每次空间重分配的最坏复杂度为 O(N) , 所以连锁更新的最坏复杂度为 O(N^2) 。

要注意的是, 尽管连锁更新的复杂度较高, 但它真正造成性能问题的几率是很低的:

  • 首先, 压缩列表里要恰好有多个连续的、长度介于 250 字节至 253 字节之间的节点, 连锁更新才有可能被引发, 在实际中, 这种情况并不多见;
  • 其次, 即使出现连锁更新, 但只要被更新的节点数量不多, 就不会对性能造成任何影响: 比如说, 对三五个节点进行连锁更新是绝对不会影响性能的;

因为以上原因, ziplistPush 等命令的平均复杂度仅为 O(N) , 在实际中, 我们可以放心地使用这些函数, 而不必担心连锁更新会影响压缩列表的性能。

重点回顾

  • 压缩列表是一种为节约内存而开发的顺序型数据结构。
  • 压缩列表被用作列表键和哈希键的底层实现之一。
  • 压缩列表可以包含多个节点,每个节点可以保存一个字节数组或者整数值。
  • 添加新节点到压缩列表, 或者从压缩列表中删除节点, 可能会引发连锁更新操作, 但这种操作出现的几率并不高。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,340评论 5 467
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,762评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,329评论 0 329
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,678评论 1 270
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,583评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,995评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,493评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,145评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,293评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,250评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,267评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,973评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,556评论 3 303
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,648评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,873评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,257评论 2 345
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,809评论 2 339

推荐阅读更多精彩内容

  • 压缩列表(ziplist)是列表键和哈希键的底层实现之一。 7.1 压缩列表的构成 压缩列表是Redis为了节约内...
    猪大金阅读 2,079评论 0 2
  • 压缩列表时列表键和哈希键的底层实现之一。当一个列表键只包含少量列表项,并且每个列表项都是小整数或者长度较短的字符串...
    杰哥长得帅阅读 1,017评论 0 0
  • 压缩列表是哈希键和列表键的底层实现之一。当一个列表键只包含少量的列表项,并且每个列表项要么就是小整数值,要么就是长...
    Felicia1993阅读 450评论 0 0
  • 压缩列表(ziplist)是列表键和哈希键的底层实现之一。 当一个列表键只包含少量列表项, 并且每个列表项要么就是...
    颜灏_2181阅读 328评论 0 0
  • 我早已厌倦这样的游戏 无数次下定决心 无数次放弃 我以为换个地方就会有好的结局 但我又再次跌入谷底 我总在深夜流泪...
    PH小文阅读 168评论 0 0