const cv = require('opencv4nodejs');
创建矩阵
const rows = 100; // height
const cols = 100; // width
var emptyMat = new cv.Mat(rows, cols, cv.CV_8UC3);
8位无符号3通道矩阵,就是常见的RGB数组[0-255,0-255,0-255]
var whiteMat = new cv.Mat(rows, cols, cv.CV_8UC1, 255);
var blueMat = new cv.Mat(rows, cols, cv.CV_8UC3, [255, 0, 0]);
使用Array创建
const matData = [
[[255, 0, 0], [255, 0, 0], [255, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[255, 0, 0], [255, 0, 0], [255, 0, 0]]
];
var matFromArray = new cv.Mat(matData, cv.CV_8UC3);使用Buffer创建
const charData = [255, 0, ...];
const matFromArray = new cv.Mat(Buffer.from(charData), rows, cols, cv.CV_8UC3);创建一个点
const pt2 = new cv.Point(100, 100);
const pt3 = new cv.Point(100, 100, 0.5);创建一个向量
const vec2 = new cv.Vec(100, 100);
const vec3 = new cv.Vec(100, 100, 0.5);
const vec4 = new cv.Vec(100, 100, 0.5, 0.5);
矩阵、向量操作
const mat0 = new cv.Mat(...);
const mat1 = new cv.Mat(...);
四则运算
const matMultipliedByScalar = mat0.mul(0.5); 标量乘法
const matDividedByScalar = mat0.div(2); 标量除法
const mat0PlusMat1 = mat0.add(mat1); 矩阵加法
const mat0MinusMat1 = mat0.sub(mat1); 矩阵减法
const mat0MulMat1 = mat0.hMul(mat1); 矩阵乘法
const mat0DivMat1 = mat0.hDiv(mat1); 矩阵除法矩阵逻辑运算操作
const mat0AndMat1 = mat0.and(mat1);
const mat0OrMat1 = mat0.or(mat1);
const mat0bwAndMat1 = mat0.bitwiseAnd(mat1);
const mat0bwOrMat1 = mat0.bitwiseOr(mat1);
const mat0bwXorMat1 = mat0.bitwiseXor(mat1);
const mat0bwNot = mat0.bitwiseNot();
访问矩阵、向量数据
const matBGR = new cv.Mat(..., cv.CV_8UC3);
const matGray = new cv.Mat(..., cv.CV_8UC1);
获取到像素点的值
const vec3 = matBGR.at(200, 100);
const grayVal = matGray.at(200, 100);使用解构赋值语法获取值
const [b, g, r] = matBGR.atRaw(200, 100);设置单个像素点的值
matBGR.set(50, 50, [255, 0, 0]);
matBGR.set(50, 50, new Vec(255, 0, 0));
matGray.set(50, 50, 255);得到一个偏移量为( 50, 50)矩阵区域的25x25的小区域
const width = 25;
const height = 25;
const region = matBGR.getRegion(new cv.Rect(50, 50, width, height));
const matAsBuffer = matBGR.getData();
const matAsArray = matBGR.getDataAsArray();
IO
读取图片
const mat = cv.imread('./path/img.jpg');
cv.imreadAsync('./path/img.jpg', (err, mat) => {})保存图片
cv.imwrite('./path/img.png', mat);
cv.imwriteAsync('./path/img.jpg', mat,(err) => {})展示图片
cv.imshow('a window name', mat);
cv.waitKey();加载base64编码的图片
const base64text='..'; //base64字符串
const base64data =base64text.replace('data:image/jpeg;base64','')
const buffer = Buffer.from(base64data,'base64');
const image = cv.imdecode(buffer);
转换矩阵为base64编码的图片
const outBase64 = cv.imencode('.jpg', croppedImage).toString('base64');
const htmlImg='<img src=data:image/jpeg;base64,'+outBase64 + '>'; //Create insert into HTML compatible <img> tag捕获webcam资源
const devicePort = 0;
const wCap = new cv.VideoCapture(devicePort);捕获视频资源
const vCap = new cv.VideoCapture('./path/video.mp4');读取帧
const frame = vCap.read();
vCap.readAsync((err, frame) => {});循环获取
const delay = 10;
let done = false;
while (!done) {
let frame = vCap.read();
if (frame.empty) {
vCap.reset();
frame = vCap.read();
}
const key = cv.waitKey(delay);
done = key !== 255;
}类型转换
const matSignedInt = matBGR.convertTo(cv.CV_32SC3);
const matDoublePrecision = matBGR.convertTo(cv.CV_64FC3);转换颜色制度
const matGray = matBGR.bgrToGray();
const matHSV = matBGR.cvtColor(cv.COLOR_BGR2HSV);
const matLab = matBGR.cvtColor(cv.COLOR_BGR2Lab);调整矩阵大小
const matHalfSize = matBGR.rescale(0.5);
const mat100x100 = matBGR.resize(100, 100);
const matMaxDimIs100 = matBGR.resizeToMax(100);获取通道、通过通道构建矩阵
const [matB, matG, matR] = matBGR.splitChannels();
const matRGB = new cv.Mat([matR, matB, matG]);