NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING 笔记

这是一篇使用增强学习来进行模型搜索的论文。
结构如下图:


overview

由于不知道网络的长度和结构,作者使用了一个RNN作为控制器,使用该控制器来产生一串信息,用于构建网络。之后训练该网络,并用网络的accuracy作为reward返回给控制器来更新控制器的参数,达到更优的策略。
其中控制器(RNN)的设计借鉴了sequence to sequence的思想,不同的是它优化的是一个不可微的目标,也就是 网络的accuracy。

方法

CNN

上图展示了如何使用RNN控制器产生一个简单的CNN网络,对于CNN网络的每一层,控制器都会产生一组超参数,当层数达到一个阈值,就会停止。RNN的参数\theta_{t}会通过增强学习算法更新,以得到更好的模型结构。

使用REINFORCE来训练

控制器可以看作agent,控制器产生一组token,也就是超参数,看作agent的action,使用产生的模型在验证集的准确率作为reward。因此,控制器需要优化下面公式:

optimization target

但是
R
是不可微分的,因此不能使用传统的BP算法,在论文中,作者使用了REINFORCE。该算法是增强学习的常用算法之一,算法将agent的policy看作一个函数,通过reward来进行参数的更新,从而实现reward的最优化。并且该算法给出了rewardpolicy参数的导数公式。
REINFORCE

它的一个经验近似公式如下:


empirical approximation

m是一个batch中的模型个数
T是超参数的个数

由于以上公式会遇到variance过大的问题,可以使用如下带baseline的公式


with baseline

分布式训练加速

分布式框架如下图

PS

思路:其中 parameter server共同保存了控制器的所有参数,这些server将参数分发给controller,每一个controller使用得到的参数进行模型的构建,这里由于得到的参数可能不同,构建模型的策略是随机的,导致每次构建的网络结构也会不同。每个controller会构建一个batch,也就是
m
个网络,然后并行地训练这些网络,得到它们的accuracy。也就是说,每一个controller会得到一个batch也就是
m
个网络,和它们的accuracy,然后根据之前提到的公式,计算参数的梯度。接着,计算完梯度的controller会将梯度发送给servers。这些server在得到梯度后,分别对自己负责的参数进行更新。更新后,当controller再次训练时,会得到更新后的参数。这里如果每个controller各自发送自己的梯度,之间不进行同步,就是异步更新。

skip connection and other layer types

为了能够在搜索空间中加入类似于resnet,inception的skip connection。作者设计了anchor,用于表示是否和前面几个层进行连接。如下


anchor

相对应的,agent的action选择如下图:


agent action

它会根据前面算出的概率P和自己的策略,判断是否加入connection。
最终,所有没有后续连接的层都会被连接到输出层,如果连接的两个层大小不一致,就将小的层用0来填充。(pad with zeros)

产生RNN网络cell

为了产生RNN网络cell,类似于LSTM,作者使用了一种树的结构,每一个树的节点都会拥有一个操作(addition, elementwise multiplication, etc.)和一个激活函数(tanh, sigmoid等)。每一个节点的输入,都连接了两个其他节点的输出。为了使用上面描述的方法,作者将每个节点编号,按照顺序预测。如下图:


RNN

根据预测的结果,将会按照如下方式构建网络:


Computation steps

总结

这篇文章将增强学习的算法应用在了模型预测上,并且巧妙地使用RNN来预测参数。总体思路依旧是通过在一个有限的搜索空间进行高效的搜索,来不断提高agent预测的模型的准确率。
note:REINFORCE算法真神奇,能够直接使用一个简单的标量reward来知道agent更新参数的方式。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,056评论 5 474
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 84,842评论 2 378
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 148,938评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,296评论 1 272
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,292评论 5 363
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,413评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,824评论 3 393
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,493评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,686评论 1 295
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,502评论 2 318
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,553评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,281评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,820评论 3 305
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,873评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,109评论 1 258
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,699评论 2 348
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,257评论 2 341

推荐阅读更多精彩内容