> mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> #重命名列名
> names(data)[1]<-"lll"#修改第一列列名
> library(reshape)
> mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> a<-mtcars
> rename(a,c(mpg="newmpg"))#但数据集不会改变,需要重新赋值
newmpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> a#还是等于mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> a<-rename(a,c(mpg="newmpg"))#重新赋值
> a
newmpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> a<-rename(a,c(mpg="newmpg",wt="op"))
> #组合数据---paste拼接函数
> v1<-c(10,20,30)
> v1
[1] 10 20 30
> v2<-"g"
> v2
[1] "g"
> v<-paste(v1,v2)
> v
[1] "10 g" "20 g" "30 g"
> v<-paste(v1,v2,sep="")#去掉空格
> v
[1] "10g" "20g" "30g"
> v<-paste(v1,v2,sep="++")#中间的连接符号
> v
[1] "10++g" "20++g" "30++g"
> #组合函数rbind-按照行合并,cbind按照列合并
> mtcars
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
> df1<-mtcars[1:10]
> df1<-mtcars[1:10,]#注意2者区别,1:10是取的10列,[1:10,]取的是10行
> df1<-mtcars[1:10]
> df1
mpg cyl disp hp drat wt qsec vs am gear
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4
> df1<-mtcars[1:10,]#注意2者区别,1:10是取的10列,[1:10,]取的是10行
> df1
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
> df1<-mtcars[,1:10]#[1:10]=[,1:10]
> df1<-mtcars[1:10,]
> df2<-mtcars[11:20,]
> df<-rbind(df1,df2)#按照行重新组合
> df
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
> df3<-mtcars[,1:4]#前四列
> df3
mpg cyl disp hp
Mazda RX4 21.0 6 160.0 110
Mazda RX4 Wag 21.0 6 160.0 110
Datsun 710 22.8 4 108.0 93
Hornet 4 Drive 21.4 6 258.0 110
Hornet Sportabout 18.7 8 360.0 175
Valiant 18.1 6 225.0 105
Duster 360 14.3 8 360.0 245
Merc 240D 24.4 4 146.7 62
Merc 230 22.8 4 140.8 95
Merc 280 19.2 6 167.6 123
Merc 280C 17.8 6 167.6 123
Merc 450SE 16.4 8 275.8 180
Merc 450SL 17.3 8 275.8 180
Merc 450SLC 15.2 8 275.8 180
Cadillac Fleetwood 10.4 8 472.0 205
Lincoln Continental 10.4 8 460.0 215
Chrysler Imperial 14.7 8 440.0 230
Fiat 128 32.4 4 78.7 66
Honda Civic 30.4 4 75.7 52
Toyota Corolla 33.9 4 71.1 65
Toyota Corona 21.5 4 120.1 97
Dodge Challenger 15.5 8 318.0 150
AMC Javelin 15.2 8 304.0 150
Camaro Z28 13.3 8 350.0 245
Pontiac Firebird 19.2 8 400.0 175
Fiat X1-9 27.3 4 79.0 66
Porsche 914-2 26.0 4 120.3 91
Lotus Europa 30.4 4 95.1 113
Ford Pantera L 15.8 8 351.0 264
Ferrari Dino 19.7 6 145.0 175
Maserati Bora 15.0 8 301.0 335
Volvo 142E 21.4 4 121.0 109
> df4<-mtcars[,5:8]
> df4
drat wt qsec vs
Mazda RX4 3.90 2.620 16.46 0
Mazda RX4 Wag 3.90 2.875 17.02 0
Datsun 710 3.85 2.320 18.61 1
Hornet 4 Drive 3.08 3.215 19.44 1
Hornet Sportabout 3.15 3.440 17.02 0
Valiant 2.76 3.460 20.22 1
Duster 360 3.21 3.570 15.84 0
Merc 240D 3.69 3.190 20.00 1
Merc 230 3.92 3.150 22.90 1
Merc 280 3.92 3.440 18.30 1
Merc 280C 3.92 3.440 18.90 1
Merc 450SE 3.07 4.070 17.40 0
Merc 450SL 3.07 3.730 17.60 0
Merc 450SLC 3.07 3.780 18.00 0
Cadillac Fleetwood 2.93 5.250 17.98 0
Lincoln Continental 3.00 5.424 17.82 0
Chrysler Imperial 3.23 5.345 17.42 0
Fiat 128 4.08 2.200 19.47 1
Honda Civic 4.93 1.615 18.52 1
Toyota Corolla 4.22 1.835 19.90 1
Toyota Corona 3.70 2.465 20.01 1
Dodge Challenger 2.76 3.520 16.87 0
AMC Javelin 3.15 3.435 17.30 0
Camaro Z28 3.73 3.840 15.41 0
Pontiac Firebird 3.08 3.845 17.05 0
Fiat X1-9 4.08 1.935 18.90 1
Porsche 914-2 4.43 2.140 16.70 0
Lotus Europa 3.77 1.513 16.90 1
Ford Pantera L 4.22 3.170 14.50 0
Ferrari Dino 3.62 2.770 15.50 0
Maserati Bora 3.54 3.570 14.60 0
Volvo 142E 4.11 2.780 18.60 1
> df5<-cbind(df3,df4)
> df5<-cbind(df3,df4)#按照列重新组合
> df5
mpg cyl disp hp drat wt qsec vs
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1
> #组合数据,merge按照公有变量组合
> df6<-read.csv("R.csv")
> df6<-read.csv("id1.csv")
> df7<-read.csv("id2.csv")
> df8<-merge.data.frame(df6,df7,by.x ="ID1",by.y ="ID2")#变量不一样的情况,前面是X,后面是Y
> df6
ID1 gender age
1 101 f 10
2 123 m 11
3 124 f 12
4 125 m 11
5 127 m 10
> df7
ID2 income diary
1 101 1300 a
2 102 1300 b
3 123 20000 a
4 124 2300 b
5 125 2400 a
6 127 2500 b
7 133 2700 a
> df8
ID1 gender age income diary
1 101 f 10 1300 a
2 123 m 11 20000 a
3 124 f 12 2300 b
4 125 m 11 2400 a
5 127 m 10 2500 b
> #变量一样的情况
> names(df6)[1]<-"ID"
> names(df7)[1]<-"ID"
> df6
ID gender age
1 101 f 10
2 123 m 11
3 124 f 12
4 125 m 11
5 127 m 10
> df7
ID income diary
1 101 1300 a
2 102 1300 b
3 123 20000 a
4 124 2300 b
5 125 2400 a
6 127 2500 b
7 133 2700 a
> df9<-merge.data.frame(df6,df7,by="ID")
> df9
ID gender age income diary
1 101 f 10 1300 a
2 123 m 11 20000 a
3 124 f 12 2300 b
4 125 m 11 2400 a
5 127 m 10 2500 b
> df10<-merge.data.frame(df6,df7,by="ID",all.x = T)
> df10<-merge.data.frame(df6,df7,by="ID",all.y = T)#df7是Y,其中数据全部得到保留,没有的项以NA呈现
> df10<-merge.data.frame(df6,df7,by="ID",all= T)#两个数据集其中数据全部都保留
> df10
ID gender age income diary
1 101 f 10 1300 a
2 102 <NA> NA 1300 b
3 123 m 11 20000 a
4 124 f 12 2300 b
5 125 m 11 2400 a
6 127 m 10 2500 b
7 133 <NA> NA 2700 a